История полиэтилентерефталата ПЭТ

| Полиэтилентерефталат | 16.10.2008

Исследования по полиэтилентерефталату и полиэфирным волокнам были начаты в Великобритании J. R. Whinfield и G. T. Dickson (его сотрудник), работавшими в это время в фирме Calico Printers Association Ltd, в период начиная с 1935 г. Заявки на основополагающие патенты по синтезу волокнообразующего полиэтилентерефталата были поданы и зарегистрированы 29 июля 1941 г. и 23 августа 1943 г., но только в 1946 г. эти патенты были опубликованы.
В дальнейшем, приобретя эти патенты, фирмы Imperial Chemical Industries Ltd. (ICI) и E. I. Du Pont de Nemours & Co на их основе разработали усовершенствованные технологические процессы получения полиэтилентерефталата и волокон из него. Производство полиэфирных волокон было начато в Англии (волокно терилен — 1947—1951 гг. в большом опытном масштабе и в 1953—1955 гг. в промышленном масштабе) и США (волокно дакрон — 1953—1955 гг. в промышленном масштабе).
В российской литературе приводятся только очень краткие данные о создании волокон из полиэтилентерефталата, поэтому необходимо кратко остановиться на основных датах истории полиэфирных волокон в СССР (России и Белоруссии).
В СССР (в России) научные исследования в области синтеза полиэтилентерефталата были начаты под руководством акад. В. В. Коршака в 1949 г. Разработка промышленной технологии синтеза полиэтилентерефталата и получения волокон были развернуты во ВНИИ иускусственных волокон (г. Мытищи, под Москвой) под руководством проф. Б. В. Петухова и проф. Э. М. Айзенштейна (при большом содействии проф. А. А. Конкина — зам. директора по НИР, а затем директора ВНИИВа), а в 1956 г. здесь же был начат опытный выпуск волокон лавсан. Позже разработки были развиты под их же руководством во ВНИИ синтетических волокон (г. Тверь)) при большой поддержке проф. А. Б. Пакшвера — зам. директора ВНИИСВа по НИР. В последующем в разработках принимали участие специалисты Германии во главе с Dr. H. Ludewig (Х. Людевиг), и на основе этих работ в 1960 г. было введено в эксплуатацию промышленное производство полиэтилентерефталата и волокна лавсан на Курском комбинате химического волокна. В 1969—71 гг. был завершен монтаж и введено в эксплуатацию крупное производство полиэтилентерефталата и полиэфирных волокон в составе Могилевского комбината химического волокна (Белоруссия). В создании этих производств, их освоении и пуске важная и ответственная роль принадлежала ведущим ученым-технологам проф. Б. В. Петухову и проф. Э.М. Айзенштейну.
После пуска первых производств немалый творческий вклад в дальнейшее развитие полиэфирных волокон внесен многими учеными СССР (в основном России и Белоруссии). Детальные исследования по совершенствованию процессов получения, изучению структуры и свойств, созданию их новых видов полиэфирных волокон выполнены проф. Б.В. Петуховым, проф. Э.М. Айзенштейном, к.т.н. В. Э. Геллером, к.т.н. В. А. Малых, к.х.н. С. А. Барановой и другими исследователями. Автору этого обзора пришлось активно участвовать в защите диссертационных работ Б. В. Петухова, Э.М. Айзенштейна, С.А. Барановой. Необходимо отметить, что такие прекрасные комплексные и глубокие исследования встречаются не часто.
В настоящее время важные работы в области развития технологии полиэфирных волокон проводятся специалистами Могилевского ПО «Химволокно», Светлогорского ПО «Химволокно», ОАО «Курскхимволокно», во ВНИИСВе, в Могилевском технологическом институте. Первоначально ПЭТ считался неподходящим полимером для термопластичного формования из-за хрупкости толстых сечений, которые кристаллизовались после расплавления. Однако в 1966 году были введены марки ПЭТ, которые оказались подходящими для литьевого формования и экструзии. Используемые сейчас материалы из ПЭТ славятся своими механическими, химическими, электрическими свойствами и своей необычной способностью существовать как в аморфном, так и в кристаллическом состоянии. Способность кристаллизоваться находится в пределах от 0 до 60 %.
Степень кристаллообразования полимера влияет на некоторые из его свойств, в том числе на химическую резистентность, способность образования волокон, термостабильность и гидрофильность.
Одним из самых важных открытий современной технологии пластиков, случившееся в конце 1960 годов стало использование ПЭТ для бутылок с газированными напитками. Растягивающее выдувноее формование (stretch blowing) обеспечивает необходимые прочность и прозрачность, необходимые для такого применения. Во время растягивающего формования с выдувом вначале методом литьевого формования получают преформу. Затем она помещается на оправку в кварцевую нагретую печь. Преформа нагревается чуть выше точки стеклования (Ts) и растягивается в несколько раз отностиельно своей первоначальной длины после того, как начинает поступать воздух, чтобы раздуть преформу во контурам выдувной формы.

3778 всего просмотров, 0 просмотров за сегодня

Общие сведения

| Полиэтилентерефталат | 16.10.2008

Полиэтилентерефталат – синтетический линейный термопластичный полимер, принадлежащий к классу полиэфиров. Продукт поликонденсации терефталевой кислоты и моноэтиленгликоля. Полиэтилентерефталат может эксплуатироваться как в аморфном, так и в кристаллическом состоянии. Аморфный полиэтилентерефталат – твердый прозрачный материал, кристаллический – твердый непрозрачный бесцветный. Степень кристалличности может быть отрегулирована отжигом при температуре между температурой стеклования и температурой плавления. Товарный полиэтилентерефталат выпускается обычно в виде гранулята с размером гранул 2-4 миллиметра.
Обычное обозначение полиэтилентерефталата на российском рынке – ПЭТ, но могут встречаться и другие обозначения: ПЭТФ или PET или PETP (полиэтилентерефталат), APET (аморфный полиэтилентерефталат).
В промышленном масштабе ПЭТ начал выпускаться как волокнообразующий полимер, но вскоре занял одно из ведущих мест и в индустрии полимерной упаковки. По темпам роста потребления в настоящее время полиэтилентерефталат является наиболее быстрорастущим полимерным материалом.
Волокнообразующий полиэтилентерефталат известен на рынке под торговыми марками лавсан или полиэстер.
Технические требования, предъявляемые к отечественному ПЭТ, определяются «ГОСТ Р 51695-2000 Полиэтилентерефталат. Общие технические условия».

2192 всего просмотров, 0 просмотров за сегодня

Строение полиэтилентерефталата

| Полиэтилентерефталат | 16.10.2008

Полиэтилентерефталат является продуктом поликонденсации терефталевой кислоты (OH)-(CO)-C6H4-(CO)-(OH) и моноэтиленгликоля (OH)-C2H4-(OH). В процессе поликонденсации образуется линейная молекула полиэтилентерефталата [-O-(CH2)2-O-(CO)-C6H4-(CO)-] n и вода. Молекулярная масса полиэтилентерефталата 20000-40000. Фениленовая группа C6H4 в основной цепи придает жесткость скелету молекулы полиэтилентерефталата и повышает температуру стеклования и температуру плавления полимерного материала. Регулярность строения полимерной цепи повышает способность к кристаллизации полиэтилентерефталата, которая в значительной степени определяет механические свойства готового изделия. Степень кристалличности полиэтилентерефталата зависит от способа его получения и обработки. Возможность управления кристалличностью полиэтилентерефталата существенно расширяет спектр его применения. Так, например, подвергая аморфный ПЭТ двухосному растяжению при температуре выше температуры стеклования, получают материал с хорошими барьерными свойствами для изготовления бутылок для газированных напитков. Максимальная степень кристалличности неориентированного полиэтилентерефталата – 40-45%, ориентированного – 60-65%.

2017 всего просмотров, 0 просмотров за сегодня

Свойства полиэтилентерефталата

| Полиэтилентерефталат | 16.10.2008

Основные характеристики полиэтилентерефталата.
Плотность аморфного полиэтилентерефталата: 1,33 г/см3.
Плотность кристаллического полиэтилентерефталата: 1,45 г/см3.
Плотность аморфно-кристаллического полиэтилентерефталата: 1,38-1,40 г/см3.
Коэффициент теплового расширения (расплав): 6,55•10-4.
Теплопроводность: 0,14 Вт/(м•К).
Сжимаемость (расплав): 99•106 Мпа.
Диэлектрическая постоянная при 23 °С и 1 кГц: 3,25.
Тангенс угла диэлектрических потерь при 1 Мгц: 0,013-0,015.
Относительное удлинение при разрыве:12-55%.
Температура стеклования аморфного полиэтилентерефталата: 67 °С.
Температура стеклования кристаллического полиэтилентерефталата: 81 °С.
Температура плавления: 250-265 °С.
Температура разложения: 350 °С.
Показатель преломления (линия Na) аморфного полиэтилентерефталата: 1,576.
Показатель преломления (линия Na) кристаллического полиэтилентерефталата: 1,640.
Предел прочности при растяжении: 172 МПа.
Модуль упругости при растяжении: 1,41•104 МПа.
Влагопоглощение: 0,3%.
Допустимая остаточная влага: 0,02%.
Морозостойкость: до –60 °С.

Полиэтилентерефталат обладает высокой механической прочностью и ударостойкостью, устойчивостью к истиранию и многократным деформациям при растяжении и изгибе и сохраняет свои высокие ударостойкие и прочностные характеристики в рабочем диапазоне температур от –40 °С до +60 °С. ПЭТ отличается низким коэффициентом трения и низкой гигроскопичностью. Разлагается под действием УФ-излучения. Общий диапазон рабочих температур изделий из полиэтилентерефталата от -60 до 170 °C.
По внешнему виду и по светопропусканию (90%) листы из ПЭТ аналогичны прозрачному оргстеклу (акрилу) и поликарбонату. Однако по сравнению с оргстеклом у полиэтилентерефталата ударная прочность в 10 раз больше.
ПЭТ – хороший диэлектрик, электрические свойства полиэтилентерефталата при температурах до 180°С даже в присутствии влаги изменяются незначительно.
ПЭТ обладает высокой химической стойкостью к кислотам, щелочам, солям, спиртам, парафинам, минеральным маслам, бензину, жирам, эфиру. Имеет повышенную устойчивость к действию водяного пара. Растворим в ацетоне, бензоле, толуоле, этилацетате, четыреххлористом углероде, хлороформе, метиленхлориде, метилэтилкетоне и, следовательно, листы ПЭТ могут так же хорошо склеиваться, как оргстекло, полистирол и поликарбонат.
Полиэтилентерефталат характеризуется отличной пластичностью в холодном и нагретом состоянии. Листы из этого полимера имеют незначительные внутренние напряжения, что делает процесс термоформования простым и высокотехнологичным, предварительная сушка листов не требуется, теплоемкость листов из полиэтилентерефталата меньше, чем у полистирола и оргстекла, поэтому нагрев ПЭТ-листов до температуры формования требует значительно меньшей тепловой энергии и времени. Все это приводит к экономии электроэнергии и снижению трудоемкости, а, следовательно, к снижению себестоимости изготавливаемой продукции. Поэтому полиэтилентерефталат может быть хорошей заменой прозрачному сплошному поликарбонату в различных сооружениях и конструкциях, так как его стоимость значительно ниже.
Термодеструкция полиэтилентерефталата происходит в температурном диапазоне 290-310 °С. Деструкция происходит статистически вдоль полимерной цепи. Основными летучими продуктами являются терефталевая кислота, уксусный альдегид и монооксид углерода. При 900 °С генерируется большое число разнообразных углеводородов. В основном летучие продукты состоят из диоксида углерода, монооксида углерода и метана.
Для повышения термо-, свето-, огнестойкости, для изменения цвета, фрикционных и других свойств в полиэтилентерефталат вводят различные добавки. Используют также методы химического модифицирования различными дикарбоновыми кислотами и гликолями, которые вводят при синтезе ПЭТ в реакционную смесь.

7832 всего просмотров, 0 просмотров за сегодня

Преимущества и недостатки ПЭТФ

| Полиэтилентерефталат | 16.10.2008

Преимущества:

• высокая прочность и жесткость
• высокое сопротивление ползучести
• высокая поверхностная твердость
• хорошо полируется
• высокая устойчивость к деформации
• хорошее свойство трения скольжения и износостойкость
• хорошие электрические изолирующие свойства
• высокая стойкость к химикатам
• хорошо лакируется

Недостатки:

• средние диэлектрические свойства

4111 всего просмотров, 0 просмотров за сегодня

Получение полиэтилентерефталата

| Полиэтилентерефталат | 16.10.2008

Полиэтилентерефталат — это пластик на основе смол, получаемых путем сложного химического процесса из нефти и газового конденсата. Исходным сырьем для производства полиэтилентерефталата различного назначения служат:
• моноэтиленгликоль (МЭГ) и очищенная терефталевая кислота (ОТФК), либо
• диметиловый эфир терефталевой кислоты (ДМТ)
Терефталевую кислоту и ДМТ в свою очередь производят из параксилола.

В промышленности ПЭТФ обычно получали двухстадийным способом: переэтерификацией диметилтерефталата (DMT) этиленгликолем с последующей поликонденсацией полученного на первой стадии процесса дигликольтерефталата (DGT)). Вплоть до середины 60-х годов прошлого столетия диметилтерефталат, несмотря на многостадийность технологии, являлся единственным мономером для получения ПЭТФ. Разработанные в то время промышленные процессы не позволяли обеспечить необходимую степень чистоты терефталевой кислоты, поэтому из нее вырабатывали ДМТ, который, благодаря низкой температуре кипения, легко подвергался очистке методом дистилляции и кристаллизации.
В 1965 году американская Аmoco Соrporation усовершенствовала технологию получения и очистки терефталевой кислоты и построила первую промышленную установку по производству ОТФК. Основной примесью технической терефталевой кислоты, полученной каталитическим окислением пара-ксилола в присутствии гомогенных катализаторов (обычно соли Со и Мn) и промоторов, является промежуточный продукт ее окисления — n-карбоксибензальдегид. Для очистки раствора технической терефталевой кислоты Аmoco Соrporation предложила использовать процесс каталитического гидрирования. В качестве катализатора был выбран палладий, нанесенный на активированный уголь. В результате гидрирования карбоксибензальдегид и ряд других окрашенных примесей переходят в более растворимые соединения, что позволяет получать кристаллы ОТФК при охлаждении полученного раствора. В настоящее время описанный способ очистки технического раствора терефталевой кислоты широко используется в современном производстве ОТФК.
Таким образом, в последнее время в мире широкое распространение получил одностадийный синтез ПЭТФ из этиленгликоля и терефталевой кислоты (TFK) по непрерывной схеме. И именно данный способ признается весьма перспективным.
Анализ научной и патентной литературы показывает, что идет непрерывный процесс совершенствования и поиска новых нанесенных палладиевых катализаторов. Катализаторы марок МРВ5, МРВ5-НD (Sud Chemie, Германия) и Е1802 (Degussa Со, Германия) предложены на рынке специально для очистки технического раствора терефталевой кислоты. Расширение производства ОТФК оказывает существенное влияние на количество палладия, потребляемого для приготовления промышленных катализаторов.
Производство ПЭТФ можно представить в виде следующей упрощенной схемы:

Технологический прорыв в производстве ОТФК привел к постепенному замещению ДМТ как мономера для получения ПЭТФ и различной полиэфирной продукции. Доля ОТФК в суммарном объеме производства ОТФК и ДМТ растет из года в год. В настоящее время около 90 % производителей полиэфирных нитей и волокон в качестве исходного сырья используют терефталевую кислоту.
Для поддержания рыночной конкурентоспособности ПЭТФ, полученной на основе ДМТ, предлагаются варианты модернизации старых производств (например, способ американской Glitsch Technology Corp.). Реконструкция установок ДМТ с переводом их на выпуск ОТФК требует больших финансовых затрат и экономически не выгодна.
К основным преимуществам использования ОТФК вместо ДМТ следует отнести:
— низкие капитальные и эксплутационные затраты в производстве ОТФК и ПЭТФ на основе ОТФК;
— отсутствие применения высокотоксичного метанола, использующегося в качестве растворителя при получении ДМТ;
— уменьшение, из-за разницы в молекулярных массах, расхода ОТФК на одну тонну ПЭТФ, а также расхода моноэтиленгликоля при получении ПЭТФ;
— обеспечение снижения себестоимости конечного продукта не менее чем на 12 % при использовании терефталевой кислоты в качестве мономера (в зависимости от рыночных колебаний цен на ДМТ и ОТФК).
В то же время при применении уксусной кислоты (в качестве растворителя) в производстве ОТФК, а также бромсодержащих промоторов требуется оборудование, устойчивое к коррозии.

5882 всего просмотров, 0 просмотров за сегодня

Применение полиэтилентерефталата

| Полиэтилентерефталат | 16.10.2008

Благодаря широкому спектру свойств, а также возможности управлять его кристалличностью, полиэтилентерефталат находит разнообразное применение и занимает пятое место в мире – 6,5% от объема потребления всех полимерных материалов.
Основными областями использования полиэтилентерефталата являются производство преформ, волокон и пленок. Конечными потребителями этой продукции выступают производство бутылочной тары и упаковки, текстильная и шинная промышленность, производство фото- и кинопленок, магнитных лент и дисков.
Следует отметить, что структура потребления ПЭТ в России коренным образом отличается от видовой структуры потребления в остальном мире, где наибольшая доля производимого ПЭТ (65%) перерабатывается в волокна и нити. Формирование российского рынка ПЭТ находится в основном под влиянием развития упаковочной отрасли, и крупнейшим сектором потребления ПЭТ (94,8%) является производство преформ для последующего выдува бутылок и других емкостей. Производство волокон и пленок из ПЭТ в России остается крайне неразвитым (4,1%).
Полиэтилентерефталат перерабатывается литьем под давлением, экструзией, раздувным формованием. Волокна и тонкие пленки из ПЭТ изготавливают экструзией с охлаждением при комнатной температуре. Степень кристалличности может быть отрегулирована отжигом при температуре между температурами стеклования и температурой плавления. Литьем под давлением на специальных комплексах для производства ПЭТ-преформ из полиэтилентерефталата производят преформы для ПЭТ-бутылок. Кроме того, из полиэтилентерефталата производят текстильные волокна, кордные нити, электрическую изоляцию, детали электротехнического назначения, ручки электрических и газовых плит, различные разъемы, детали кузовов автомобилей, двигателей, насосов, компрессоров, корпуса швейных машин, изделия медицинского назначения.
Отдельный сегмент современного рынка – рециклинг полиэтилентерефталата.
В России несколько компаний, используя недорогие линии для переработки ПЭТ, в том числе и российского производства, специализируются на покупке отходов и продаже вторичного полиэтилентерефталата. Отходы собираются, сортируются вручную или автоматически и поступают на участок дробления. Загрязненная ПЭТ-дробленка проходит несколько контуров мойки, зону отделения примесей, сушку и поступает в зону растарки. Полученные ПЭТ-хлопья (флексы) можно гранулировать или перерабатывать в негранулированном виде. Вторичный ПЭТ хорошего качества можно использовать без органичений, в том числе для упаковки продуктов. Многие производители ПЭТ-преформ с успехом используют вторсырье в своем производстве.
Кроме того, полиэтилентерефталат можно перерабатывать в активированный уголь, получаемый посредством пиролиза ПЭТ.

2056 всего просмотров, 0 просмотров за сегодня

Основные отрасли – потребители ПЭТФ

| Полиэтилентерефталат | 16.10.2008

Сегодня ПЭТ используется для производства разнообразнейшей упаковки для продуктов и напитков, косметики и фармацевтических средств, ПЭТ материалы незаменимы при изготовлении аудио, видео и рентгеновских пленок, автомобильных шин, бутылок для напитков, пленок с высокими барьерными свойствами, волокон для тканей. Широкий ряд применений возможен благодаря исключительному балансу возможностей ПЭТ и тому, что в готовом изделии степень кристалличности и уровень ориентации можно контролировать.
Итак, физические свойства ПЭТФ делают его идеальным материалом для использования в следующих основных областях:
• изготовление упаковки (бутылки, коррексы, одноразовая посуда и т.д.)
• плёнок (торговое название «лавсан»)
• волокна (торговое название «полиэстер»)
• конструкционные элементы для строительства, композиционных материалов для машиностроительной промышленности и др

1818 всего просмотров, 0 просмотров за сегодня

Волокна ПЭТ

| Полиэтилентерефталат | 16.10.2008

Основной областью использования ПЭТФ в мире является изготовление полиэфирных волокон (лавсан или терилен) и нитей. Если в России на производство волокон уходит всего лишь 2% от совокупного потребления ПЭТФ – гранулята, то в мире – около 68%.
Широкое применение ПЭТФ началось в 60-е годы первоначально в производстве текстиля. С тех пор спрос неуклонно растет в первую очередь в развитых странах. На рынке ПЭТФ в большинстве регионов отмечается чрезвычайно быстрый рост спроса со стороны продуцентов полиэфирных волокон и нитей. В свою очередь из полиэфирных волокон и нитей ихготавливают полиэфирные (ПЭФ) ткани. Рост спроса на ПЭФ был вызван, в первую очередь, более низкой себестоимостью по сравнению с другими видами химических волокон и нитей. Вторым фактором популярности полиэфира стал широкий спектр применения в связи с прекрасными свойствами материала. По прочности и удлинению полиэфир не уступает полиамиду, а по светоустойчивости превосходит его, по формоустойчивости превосходит самое формоустойчивое из всех природных волокон — шерсть, имеет низкую гигроскопичность и высокую термостойкость, что является достоинством при производстве технических тканей. Различают: Текстильные волокна и нити.
1. Полиэфирные текстильные волокна — производство пряжи полиэфирной и смесовой, широко применяется в производстве хлолпковых, льняных, шерстяных тканей.
2. Полиэфирные текстильные нити — используются в производстве широкого ассортимента различных типов материалов: подкладочные, костюмные ткани и др.

3234 всего просмотров, 0 просмотров за сегодня

Технические волокна и нити

| Полиэтилентерефталат | 16.10.2008

Основные сферы применения технических волокон и нитей:
1. Армирование шлангов;
2. Армирование приводных ремней;
3. Производство упаковочной ленты;
4. Производство автомобильных подушек безопасности;
5. Производство напольных покрытий;
6. Армирование тентовых тканей;
7. Производство баннерных тканей и армирование баннерных ПВХ покрытий;
8. Производство кордных тканей;
9. Производство геотканей.

1854 всего просмотров, 0 просмотров за сегодня

Страница 1 из 21 2
SAN пластик общего назначения АБС-пластик cтандартный литьевой АБС-пластик антистатический АБС-пластик литьевой АБС-пластик самозатухающий АБС-пластик специальный литьевой АБС-пластик специальный экструзионный АБС-пластик стандартный литьевой АБС-пластик стандартный экструзионный АБС-пластик термостойкий литьевой Блок-сополимер пропилена и этилена Блоксополимер пропилена Бален Высокоударопрочный полистирол Гроднамид Пoлипропилен ПВХ - пластик Пластикат поливинилхлоридный Полиамид стеклонаполненный Полиамид трудногорючий Поливинилхлоридный пенопласт Поликарбонат cпециальный Поликарбонат неусиленный Поликарбонат общего назначения Поликарбонат самозатухающий Поликарбонат специальный Поликарбонат стеклонаполненный Полимеры Полиметилметакрилат гранулированный Полиметилметакрилат листовой Полипропилен Бален Полистирол общего назначения Полистирол ударопрочный Полиуретан Elastollan Полиэтилeн Полиэтилен высокой плотности Полиэтилен для кабельной промышленности Полиэтилен низкого давления Статистический сополимер пропилена Статистический сополимер пропилена Бален Сэвилен Фторопласт Фторопласт-4МБ Фторопласт-40 Фторопласт-40М Фторопласт-42