Комментарии к записи Полимеры отключены

Полимеры

| ИНФОРМАЦИЯ ПО ТЕМЕ | 21.11.2008

Автор этой статьи  акад.  Виктор Александрович  Кабанов — выдающийся ученый в области химии высокомолекулярных соединений, ученик и преемник акад. В.А. Каргина, одного из мировых лидеров науки о полимерах, создателя  крупной научной школы, автора большого количества работ, книг и учебных пособий.
Полимеры (от греч. polymeres — состоящий из многих частей, многообразный), химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев). Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и (или) координационных валентностей.

Классификация полимеров

По происхождению полимеры  делятся на природные (биополимеры), например белки, нуклеиновые кислоты, смолы природные, и синтетические, например полиэтилен, полипропилен, феноло-формальдегидные смолы. Атомы или атомные группы могут располагаться в макромолекуле в виде: открытой цепи или вытянутой в линию последовательности циклов (линейные полимеры., например каучук натуральный); цепи с разветвлением (разветвленные полимеры., например амилопектин); трёхмерной сетки (сшитые полимеры, например отверждённые эпоксидные смолы). Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами, например поливинилхлорид, поликапроамид, целлюлоза.

Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых стереоизомеров или из различных стереоизомеров, чередующихся в цепи в определённой периодичности, полимеры называются стереорегулярными (см. Стереорегулярные полимеры).

Полимеры, макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Такие сополимеры называются привитыми (см. также Сополимеры).

Полимеры, в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами.

В зависимости от состава основной (главной) цепи полимеры делят на: гетероцепные, в основной цепи которых содержатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора, и гомоцепные, основные цепи которых построены из одинаковых атомов. Из гомоцепных полимеров наиболее распространены карбоцепные полимеры, главные цепи которых состоят только из атомов углерода, например полиэтилен, полиметилметакрилат, политетрафторэтилен. Примеры гетероцепных полимеров. — полиэфиры (полиэтилентерефталат, поликарбонаты и др.), полиамиды, мочевино-формальдегидные смолы, белки, некоторые кремнийорганические полимеры. полимеры, макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими (см. Элементоорганические полимеры). Отдельную группу полимеров. образуют неорганические полимеры, например пластическая сера, полифосфонитрилхлорид (см. Неорганические полимеры).

Свойства и важнейшие характеристики полимеров

Линейные полимеры обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотропные высокоориентированные волокна и плёнки (см. Полимеров ориентированное состояние); способность к большим, длительно развивающимся обратимым деформациям (см. Высокоэластическое состояние); способность в высокоэластическом состоянии набухать перед растворением; высокая вязкость растворов (см. Растворы полимеров, Набухание). Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трёхмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластическим деформациям.

Полимеры могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации — регулярность достаточно длинных участков макромолекулы. В кристаллических полимерах. возможно возникновение разнообразных надмолекулярных структур (фибрилл, сферолитов, монокристаллов и др.), тип которых во многом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) полимеров  менее выражены, чем в кристаллических.
Незакристаллизованные полимеры могут находиться в трёх физических состояниях: стеклообразном, высокоэластическом и вязкотекучем. полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластическое состояние называются эластомерами, с высокой — пластиками. В зависимости от химического состава, строения и взаимного расположения макромолекул свойства полимеров. могут меняться в очень широких пределах. Так, 1,4-цис-полибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 град.С — эластичный материал, который при температуре — 60 град.С переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жёстких цепей, при температуре около 20 град.С — твёрдый стеклообразный продукт, переходящий в высокоэластическое состояние лишь при 100 град.С. Целлюлоза — полимер с очень жёсткими цепями, соединёнными межмолекулярными водородными связями, вообще не может существовать в высокоэластическое состоянии до температуры её разложения. Большие различия в свойствах П. могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики. Так, стереорегулярный полистирол — кристаллическое вещество с температурой плавления около 235 град.С, а нестереорегулярный (атактический) вообще не способен кристаллизоваться и размягчается при температуре около 80 град.С.

Полимеры могут вступать в следующие основные типы реакций: образование химических связей между макромолекулами (т. н. сшивание), например при вулканизации каучуков, дублении кожи; распад макромолекул на отдельные, более короткие фрагменты (см. Деструкция полимеров); реакции боковых функциональных групп полимеров. с низкомолекулярными веществами, не затрагивающие основную цепь (т. н. полимераналогичные превращения); внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы, например внутримолекулярная циклизация. Сшивание часто протекает одновременно с деструкцией. Примером полимераналогичных превращений может служить омыление поливинилацетата, приводящее к образованию поливинилового спирта. Скорость реакций полимеров. с низкомолекулярными веществами часто лимитируется скоростью диффузии последних в фазу полимеров. Наиболее явно это проявляется в случае сшитых полимеров. Скорость взаимодействия макромолекул с низкомолекулярными веществами часто существенно зависит от природы и расположения соседних звеньев относительно реагирующего звена. Это же относится и к внутримолекулярным реакциям между функциональными группами, принадлежащими одной цепи.

Некоторые свойства полимеров., например растворимость, способность к вязкому течению, стабильность, очень чувствительны к действию небольших количеств примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный полимеры из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1-2 поперечные связи.

Важнейшие характеристики полимеров — химический состав, молекулярная масса и молекулярно-массовое распределение, степень разветвлённости и гибкости макромолекул, стереорегулярность и др. Свойства полимеров. существенно зависят от этих характеристик.

Получение полимеров

Природные полимеры образуются в процессе биосинтеза в клетках живых организмов. С помощью экстракции, фракционного осаждения и др. методов они могут быть выделены из растительного и животного сырья. Синтетические полимеры получают полимеризацией и поликонденсацией. Карбоцепные полимеры  обычно синтезируют полимеризацией мономеров с одной или несколькими кратными углерод-углеродными связями или мономеров, содержащих неустойчивые карбоциклические группировки (например, из циклопропана и его производных). Гетероцепные полимеры получают поликонденсацией, а также полимеризацией мономеров, содержащих кратные связи углерод-элемент (например, С = О, С ? N, N = С = О) или непрочные гетероциклические группировки (например, в окисях олефинов, лактамах).

Применение полимеров

Благодаря механической прочности, эластичности, электроизоляционным и др. ценным свойствам изделия из полимеров применяют в различных отраслях промышленности и в быту. Основные типы полимерных материалов — пластические массы, резины, волокна (см. Волокна текстильные, Волокна химические), лаки, краски, клеи, ионообменные смолы. Значение биополимеров определяется тем, что они составляют основу всех живых организмов и участвуют практически во всех процессах жизнедеятельности.

Историческая справка

Термин «полимерия» был введён в науку И. Берцелиусом в 1833 для обозначения особого вида изомерии, при которой вещества (полимеры), имеющие одинаковый состав, обладают различной молекулярной массой, например этилен и бутилен, кислород и озон. Т. о., содержание термина не соответствовало современным представлениям о полимерах. «Истинные» синтетические полимеры к тому времени ещё не были известны.

Ряд полимеров  был, по-видимому, получен ещё в 1-й половине 19 в. Однако химики тогда обычно пытались подавить полимеризацию и поликонденсацию, которые вели к «осмолению» продуктов основной химической реакции, т. е., собственно, к образованию полимера. (до сих пор полимеры  часто называли «смолами»). Первые упоминания о синтетических полимерах  относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол).

Химия полимеров  возникла только в связи с созданием А. М. Бутлеровым теории химического строения (начало 60-х гг. 19 в.). А. М. Бутлеров изучал связь между строением и относительной устойчивостью молекул, проявляющейся в реакциях полимеризации. Дальнейшее своё развитие (до конца 20-х гг. 20 в.) наука о полимерах  получила главным образом благодаря интенсивным поискам способов синтеза каучука, в которых участвовали крупнейшие учёные многих стран (Г. Бушарда, У. Тилден, нем. учёный К. Гарриес, И. Л. Кондаков, С. В. Лебедев и др.). В 30-х гг. было доказано существование свободнорадикального (Г. Штаудингер и др.) и ионного (американский учёный Ф. Уитмор и др.) механизмов полимеризации. Большую роль в развитии представлений о поликонденсации сыграли работы У. Карозерса.

С начала 20-х гг. 20 в. развиваются также теоретические представления о строении полимеров. Вначале предполагалось, что такие биополимеры, как целлюлоза, крахмал, каучук, белки, а также некоторые синтетические полимеры, сходные с ними по свойствам (например, полиизопрен), состоят из малых молекул, обладающих необычной способностью ассоциировать в растворе в комплексы коллоидной природы благодаря нековалентным связям (теория «малых блоков»). Автором принципиально нового представления о полимерах как о веществах, состоящих из макромолекул, частиц необычайно большой молекулярной массы, был Г. Штаудингер. Победа идей этого учёного (к началу 40-х гг. 20 в.) заставила рассматривать полимеры как качественно новый объект исследования химии и физики.

Тэгов нет

5206 всего просмотров, 0 просмотров за сегодня

  

SAN пластик общего назначения АБС-пластик cтандартный литьевой АБС-пластик антистатический АБС-пластик литьевой АБС-пластик самозатухающий АБС-пластик специальный литьевой АБС-пластик специальный экструзионный АБС-пластик стандартный литьевой АБС-пластик стандартный экструзионный АБС-пластик термостойкий литьевой Блок-сополимер пропилена и этилена Блоксополимер пропилена Бален Высокоударопрочный полистирол Гроднамид Пoлипропилен ПВХ - пластик Пластикат поливинилхлоридный Полиамид стеклонаполненный Полиамид трудногорючий Поливинилхлоридный пенопласт Поликарбонат cпециальный Поликарбонат неусиленный Поликарбонат общего назначения Поликарбонат самозатухающий Поликарбонат специальный Поликарбонат стеклонаполненный Полимеры Полиметилметакрилат гранулированный Полиметилметакрилат листовой Полипропилен Бален Полистирол общего назначения Полистирол ударопрочный Полиуретан Elastollan Полиэтилeн Полиэтилен высокой плотности Полиэтилен для кабельной промышленности Полиэтилен низкого давления Статистический сополимер пропилена Статистический сополимер пропилена Бален Сэвилен Фторопласт Фторопласт-4МБ Фторопласт-40 Фторопласт-40М Фторопласт-42