Комментарии к записи Высокомолекулярные соединения отключены

Высокомолекулярные соединения

| ИНФОРМАЦИЯ ПО ТЕМЕ | 14.02.2009

Химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов). В состав молекул В. с. (макромолекул) входят тысячи атомов, соединенных химическими связями.
Классификация. По происхождению высокомолекулярные соединения делят на природные, или биополимеры (напр., белки, нуклеиновые кислоты, полисахариды), и синтетические (напр., полиэтилен, феноло-альдегидные смолы).
В зависимости от расположения в макромолекуле атомов и атомных групп различают:

  1. Линейные высокомолекулярные соединения, макромолекулы которых представляют собой открытую, линейную, цепь (напр., каучук натуральный) или вытянутую в линию последовательность циклов (напр., целлюлоза);
  2. Разветвленные высокомолекулярные соединения, макромолекулы которых имеют форму линейной цепи с ответвлениями (напр., амилопектин);
  3. Сетчатые высокомолекулярные соединения — трехмерные сетки, образованные отрезками высокомолекулярных соединений, цепного строения (напр., отвержденные феноло-альдегидные смолы).

Полимеры, макромолекулы которых состоят из одинаковых стереоиэомеров или из различных стереоизомеров, чередующихся в цепи в определенной периодичности, наз. стереорегулярными. Полимеры, в к-рых каждый или нек-рые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, наз. стереоблоксополимеры.

По химическому составу макромолекулы различают гомополимеры (полимер образован из одного мономера, напр. полиэтилен) и сополимеры (полимер образован, по меньшей мере, из двух разл. мономеров). Высокомолекулярные соединения, состоящие из одинаковых мономерных звеньев, но различающиеся по мол, массе, наз. полимергомологами.
Сополимеры в зависимости от характера распределения разл. звеньев в макромолекуле делят на регулярные и нерегулярные. В регулярных макромолекулах наблюдается определенная периодичность распределения. Для нерегулярных сополимеров характерно случайное, или статистическое распределение звеньев; оно наблюдается у мн. синтетич. сополимеров. В белках нерегулярные последовательности звеньев задаются генетич. кодом. Сополимеры, в к-рых достаточно длинные непрерывные последовательности, образованные каждым из звеньев, сменяют друг друга в пределах макромолекулы, наз. блоксополимерами. Последние наз. регулярными, если длины блоков и их чередование подчиняются определенной периодичности. При уменьшении длины блоков различие между блоксополимерами и статистическими сополимерами постепенно утрачивается. К внутренним (не концевым) звеньям макромолекулярной цепи одного химического состава или строения могут быть присоединены одна или несколько цепей другого состава или строения; такие сополимеры называются привитыми.
В зависимости от состава основной цепи макромолекулы все ВС, делят на два больших класса: гомоцепные, основные цепи которых построены из одинаковых атомов, и гетероцепные, в основной цепи которых содержатся атомы разных элементов, чаще всего С, N, Si, P. Среди гомоцепных высокомолекулярных соединений наиболее распространены карбоцепные (главные цепи состоят только из атомов углерода), например полиэтилен, полиметилметакрилат, и др. Примеры гетероцепных В. С.- полиэфиры, полиамиды, кремнийорганические полимеры, белки, целлюлоза. В. С., в макромолекулы к-рых наряду с углеводородными группами входят атомы неорганогенных элементов, наз., элементоорганическими. В полимерах, содержащих атомы металла (напр., Zn, Mg, Cu), обычные ковалентные связи могут сочетаться с координационными.
В зависимости от формы макромолекулы В. с. делят на глобулярные и фибриллярные. У фибриллярных В. С. молекулы представляют собой линейные или слаборазветвленные цепи. Фибриллярные В. с. легко образуют надмолекулярные структуры в виде асимметричных пачек молекул — фибрилл. Глобулярными паз. В. С., макромолекулы к-рых имеют форму компактных шарообразных клубков — глобул, возможно также образование глобул из фибриллярных.

Свойства и важнейшие характеристики

Высокомолекулярные соединения обладают специфическим комплексом физико-химических и механических свойств.
Важнейшие из этих свойств:

  • способность образовывать высокопрочные анизотропные высоко- ориентированные волокна и пленки;
  • способность к большим, длительно развивающимся обратимым деформациям;
  • способность в высокоэластичном состоянии набухать перед растворением; высокая вязкость растворов.

Этот комплекс свойств обусловлен высокой мол. массой, цепным строением, а также гибкостью макромолекул и наиболее полно выражен у линейных В. с. При переходе от линейных цепей к разветвленным, редким трехмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится все менее выраженным. Сильно сшитые В. С. нерастворимы, неплавки и неспособны к высокоэластичным деформациям.
Высокомолекулярные соединения могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации — регулярность достаточно длинных участков макромолекулярной цепи. В кристаллических полимерах возможно возникновение разнообразных кристаллических форм (фибрилл, сферолитов, монокристаллов и др.), тип которых во многом определяет свойства полимерного материала.
Незакристаллизированные полимеры могут находиться в трех физических состояниях:

  • стеклообразном.
  • высокоэластичом.
  • вязкотекучем.

Высокомолекулярные соединения с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластичное состояние называются эластомерами, с высокой- пластиками. Свойства отдельных высокомолекулярных соединения определяются химическим составом, строением и взаимным расположением макромолекул (надмолекулярной структурой) в конденсированной фазе. В зависимости от этих факторов свойства высокомолекулярные соединения могут меняться в очень широких пределах. Большие различия в свойствах высокомолекулярных соединений могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики.

Высокомолекулярные соединения могут вступать в основном в следующие реакции:

  1. Образование химичесикх связей между макромолекулами (т. и. сшивание);
  2. Распад макромолекулярных цепей на отдельные, более короткие фрагменты (см. деструкция);
  3. Реакции боковых функциональных групп высокомолекулярных соединений с низкомолекулярными веществами, не затрагивающие основную цепь и приводящие к образованию полимераналогов;
  4. Внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы, направленная внутримолекулярная циклизации.

Некоторые свойства высокомолекулярных соединений например: растворимость, способность к вязкому тёчению, стабильность и др., очень чувствительны к действию небольших количеств примесей или добавок, реагирующих с макромолекулами.
Важнейшие характеристики высокомолекулярных соединений: химический состав, молекулярная масса и молекулярно-массовое распределение, степень разветвленности макромолекулярных цепей, стереорегулярность и др.

Получение высокомолекулярных соединений

Природные высокомолекулярные соединения образуются в процессе биосинтеза в клетках живых организмов, могут быть выделены из растительного и животного сырья. Неорганические природные В. с. образуются в результате геохимических процессов, происходящих в земной коре. Синтетические В. с. получают путем реакций полимеризации и поликонденсации. Карбоцепные В. с. обычно получают полимеризацией мономеров с одной или несколькими кратными углерод — углеродными связями или мономеров, содержащих неустойчивые карбоциклические группировки. Гетероциклические В.С. получают в результате реакций поликонденсации, а также полимеризации мономеров, содержащих кратные связи углерод — элемент (напр. С—О, С—N , N—С—О) или же непрочные гетероциклич. группировки.

Применение высокомолекулярных соединений

Благодаря механической прочности, эластичности, электроизоляционным и др. ценным свойствам В.С. применяют в различных отраслях промышленности и в быту. Основные типы полимерных материалов — резины, волокна, пластмассы, пленки, лаки, эмали, краски и клеи. Биологическое значение В. С. определяется тем, что они составляют основу всех живых организмов и участвуют практически во всех процессах жизнедеятельности.

Тэгов нет

7886 всего просмотров, 0 просмотров за сегодня

  

SAN пластик общего назначения АБС-пластик cтандартный литьевой АБС-пластик антистатический АБС-пластик литьевой АБС-пластик самозатухающий АБС-пластик специальный литьевой АБС-пластик специальный экструзионный АБС-пластик стандартный литьевой АБС-пластик стандартный экструзионный АБС-пластик термостойкий литьевой Блок-сополимер пропилена и этилена Блоксополимер пропилена Бален Высокоударопрочный полистирол Гроднамид Пoлипропилен ПВХ - пластик Пластикат поливинилхлоридный Полиамид стеклонаполненный Полиамид трудногорючий Поливинилхлоридный пенопласт Поликарбонат cпециальный Поликарбонат неусиленный Поликарбонат общего назначения Поликарбонат самозатухающий Поликарбонат специальный Поликарбонат стеклонаполненный Полимеры Полиметилметакрилат гранулированный Полиметилметакрилат листовой Полипропилен Бален Полистирол общего назначения Полистирол ударопрочный Полиуретан Elastollan Полиэтилeн Полиэтилен высокой плотности Полиэтилен для кабельной промышленности Полиэтилен низкого давления Статистический сополимер пропилена Статистический сополимер пропилена Бален Сэвилен Фторопласт Фторопласт-4МБ Фторопласт-40 Фторопласт-40М Фторопласт-42