Экструзионно-выдувное формование

  • Опубликовано: 25.07.2023 19:21

Текст объявления

Для производства полых и объемных изделий из термопластов — канистр, бочек, бутылей, флаконов, игрушек и т. п. — наибольшее распространение получил метод раздувного формования. Производство изделий этим методом осуществляется в две стадии: сначала получают трубную заготовку с температурой несколько ниже температуры плавления, которую затем раздувают сжатым воздухом. В отличие от большинства методов получения изделий из пластмасс, где формование осуществляется из расплава, в основе этой технологии лежит использование не только пластической, но и преимущественно высокоэластической деформации, которая присуща только полимерам и является результатом перехода свернутых в клубок или собранных в пачки макромолекул в вытянутую форму под воздействием механических сил.

В зависимости от выбранного способа получения заготовки различают два метода раздувного формования: экструзионный и литьевой.

В первом случае с помощью экструдера формуется заготовка в виде трубки (рукава), которая затем поступает в форму, где и происходит собственно процесс формования изделия за счет создания внутри заготовки повышенного давления воздуха.

Благодаря большой производительности и высокому уровню автоматизации этот метод является в настоящее время основным способом формования полых изделий и, в результате ряда усовершенствований, позволяет получать изделия объёмом от единиц миллилитров до нескольких десятков и даже сотен литров.

Для приготовления полых изделий применяются, как правило, экструдеры сравнительно небольших размеров, с диаметром шнека 50-90 мм. Поскольку сопротивление головки сравнительно невелико, а основным требованием является получение расплава с высокой однородностью, длина шнека также не превышает 15-18 D. Схематически процесс производства полых изделий можно представить следующим образом.

Расплавленный и гомогенизированный в экструдере материал выдавливается из головки вниз в виде трубчатой заготовки, которая попадает в открытую к этому моменту форму. После того, как длина заготовки достигнет необходимой величины, полуформы смыкаются, зажимая нижний и верхний края заготовки своими бортами. При этом происходит сварка нижнего конца заготовки и оформление отверстия на ее верхнем конце (или наоборот; об этом ниже). После смыкания формы в нее через дорн пли ниппель подается сжатый воздух, под действием которого размягченный материал рукава принимает конфигурацию внутренней полости формы. В результате соприкосновения с холодными стенками формы полимер затвердевает; далее форма раскрывается, готовое изделие извлекается и направляется на окончательную обработку (удаление приливов, снятие заусенцев и т. п.). Производство полых изделий осуществляется на специальных агрегатах, снабженных (помимо экструдера) механизмом перемещения, разъема и смыкания формы с гидравлическим или пневматическим приводом. Так как процесс формования распадается на две неравные по продолжительности стадии: короткую стадию выдавливания заготовки и длительную — формования и охлаждения изделия, то для повышения производительности большинство агрегатов выполняется либо многопозиционными, с несколькими формами, либо — особенно при производстве изделий небольшого объема — снабжается двух- и более канальной формующей головкой, иногда с несколькими мундштуками на каждом из каналов. В первом случае процессы получения заготовки и оформления изделия разобщены и происходят в одной форме, но в различных позициях агрегата; во втором -материала из экструдера поступает периодически в один или группу соединенных параллельно мундштуков, через которые заготовки попадают в форму. За время формования и охлаждения готовых изделий в этой форме в остальные подаются заготовки, начинается процесс формования и т. д. Для этого специальный кран, соединенный с приводом полуформ, направляет поток расплава последовательно в каждый из каналов, ведущих к формующей головке. Для нормальной работы агрегата скорость выдавливания всех заготовок должна быть одинаковой, поскольку смыкание всех форм происходит одновременно.

Формование заготовки является важнейшей операцией, которая во многом предопределяет свойства и качества готового изделия. Поступающий в мундштук расплав должен быть гомогенным, иметь постоянную температуру по всему периметру заготовки и выдавливаться совершенно равномерно (без пульсации). При получении изделий, имеющих в сечении форму прямоугольника, эллипса и т. п., а также изделий сложной конфигурации, сечение формующей щели делают неодинаковым — для получения готового изделия со стенками одинаковой толщины участки заготовки, которые раздуваются больше, должны иметь большую толщину. Следует иметь в виду, что выдавливаемая заготовка имеет большую толщину, чем сечение формующего зазора вследствие так называемого «разбухания» экструдата, носящего релаксационный характер.

«Разбухание» зависит от скорости сдвига, длины формующего канала и вязкости расплава, что затрудняет управление процессом.

Кроме того, при формовании продолговатых и длинных изделий было отмечено, что из-за вытягивания пластичной заготовки под действием собственного веса толщина стенок верхней части изделия оказывается меньшей, чем нижней части.

Разнотолщинность заготовки зависит от скорости выдавливания расплава, его вязкости и веса заготовки. Обычно формование заготовки ведут при минимально возможной температуре расплава и высокой скорости экструзии. Поэтому в современных машинах для управления формой, размерами и толщиной стенок заготовки используются микропроцессоры, позволяющие за счет изменения скорости подачи расплава и осевого перемещения конического дорна формировать заготовку с необходимой степенью разнотолщинности. Минимальная разнотолщинность достигается при коэффициенте раздува 3-3,5.

Соответствующая программа составляется заранее с учетом геометрии изделия, температурных параметров процесса и реологических характеристик расплава полимера. Перед началом формования следующей заготовки дорн автоматически возвращается в исходное положение.

В зависимости от конструкции изделия и формующего инструмента подача сжатого воздуха для формования изделия может производиться через дорн (сверху), через специальный ниппель (снизу) или через полую иглу (рис. 9.2). Последний способ применяется главным образом при производстве замкнутых изделий (без отверстия), так как формующее отверстие в этом случае очень мало и затягивается после удаления иглы разогретым материалом.

При необходимости изготовления больших по массе изделий обычный экструдер не может обеспечить выдавливание заготовки с достаточной скоростью, а установка высокопроизводительного экструдера (с большим диаметром шнека) невыгодна, так как из-за периодичности процесса формования изделия он будет использоваться весьма непроизводительно. Поэтому агрегат для производства крупногабаритных изделий, как правило, снабжается копильником — горизонтальным или вертикальным гидравлическим прессом, материальный цилиндр которого оснащен обогревателями.

После заполнения копильника экструдер останавливают, в прессовой гидросистеме копильника создается давление, под действием которого его поршень с заданной скоростью выдавливает через угловую головку необходимую порцию расплава полимера (рис. 9.3). Трубчатая заготовка попадает в форму, установленную на специальной раме; после смыкания формы включается привод экструдера, который подает в копильник новую порцию расплава, в то время как в форме происходит оформление и охлаждение изделия. Формование изделий производится воздухом с давлением до 0,5 МПа, для выдавливания заготовки давление в гидросистеме может достигать 15 МПа.

Готовые отформованные изделия нуждаются в дополнительной обработке, поскольку на торцевых стенках (а иногда и на боковых) имеется избыточный материал, отжатый бортом формы. Удаление таких прибылей, обрезка пресс-кантов, горловин или ниппелей осуществляется с помощью приспособлений или вручную.

Итак, технологический процесс получения изделий методом экструзионно-выдувного формования складывается из следующих операций:

— гомогенизация расплава и выдавливание рукавной заготовки

— раздув заготовки в форме и формование изделия

— охлаждения изделия и его удаление из формы

— окончательная обработка готовых изделий

При правильном выборе конструкции экструзионного агрегата он обеспечивает необходимое качество расплава полимера (температура, гомогенность). Использование копильника должно лишь способствовать более высокой скорости формования заготовки большой массы.

Как уже отмечалось выше, формование заготовки связано с возникновением ее разнотолщинности в результате разбухания экструдата и растяжения под действием собственного веса. Разбухание экструдата определяется геометрией формующего канала, скоростью выдавливания заготовки и в значительной степени может быть учтено на стадии выбора технологом формующего инструмента. В целом, разбухание рукава уменьшается с увеличением длины канала в головке, ростом температуры расплава. При увеличении скорости выдавливания заготовки разбухание возрастает. Изменение толщины стенки заготовки в результате растяжения можно уменьшить за счет снижения температуры расплава, однако лишь до определенных пределов, так как это вызывает необходимость повышения давления на стадии формования изделия и сопровождается ухудшением качества поверхности готовых изделий.

В процессе получения изделий прямоугольной формы для компенсации разницы степени вытяжки прибегают к использованию эллиптического мундштука в сочетании с цилиндрическим дорном.

Применение микропроцессоров не только полностью автоматизирует стадию формования заготовки, но и позволяет добиться высокой стабильности работы агрегата, при выпуске высококачественных изделий.

Стадия раздува заготовки начинается после смыкания полуформ и защемления части контура будущего изделия пресс-кантами формы; одновременно трубчатая заготовка отделяется от формующей головки. Раздув заготовки первоначально носит «свободный» характер — изменение толщины происходит достаточно равномерно, и раздуваемый рукав имеет форму «пузыря».

После контакта расширяющейся заготовки с формой эта равномерность нарушается — деформация контактирующих с формой
участков заготовки прекращается в результате более быстрого охлаждения (толщина стенки равна ), и формование остальных частей изделия происходит лишь за счет ориентации при продольной вытяжке в неохлажденных частях заготовки (участок k-k). В этом случае толщина стенки уменьшается. На качество изделия на этой стадии процесса формования решающее влияние оказывают давление воздуха и температура заготовки. С увеличением давления улучшается качество поверхности, снижается коробление, уменьшается время охлаждения. Отметим, однако, что формование с избыточным давлением требует значительного повышения усилия смыкания формы.

Стадия охлаждения начинается с момента контакта заготовки с поверхностью охлаждаемой формы и заканчивается после охлаждения наиболее толстых участков изделия, примыкающих к горловине или днищу. Преждевременное извлечение изделий сопровождается размягчением соседних с горловиной участков и их необратимым деформированием.

Основным фактором на этой стадии является температура формы. Она не только отражается на качестве готовых изделий, но и определяет производительность процесса, так как охлаждение составляет от 50 до 75 % времени цикла формования. Поэтому широко используют интенсивное охлаждение форм различными хладагентами, подачу в полость изделия охлажденного воздуха, водяного тумана, жидкого азота и углекислоты. Однако охлаждение формы ниже 0-5 °С нецелесообразно из-за опасности ухудшения качества поверхности готовых изделий вследствие отпотевания поверхности формы.

Время охлаждения можно сократить понижением температуры расплава (может сопровождаться ухудшением качества поверхности готовых изделий) и повышением давления воздуха, что способствует улучшению теплоотдачи от изделия к стенке формы.

В результате охлаждения изделий их объем уменьшается вследствие естественной усадки. Наибольшая усадка наблюдается в диаметральном направлении, поскольку здесь развивается максимальная деформация при формовании изделия. Для получения выдувных изделий с одинаковой усадкой в продольном и поперечном направлениях необходимо, чтобы степень вытяжки была равна коэффициенту раздува.

Производство изделий методом экструзии с раздувом сопровождается образованием значительного количества отходов (до 35 %). Большая их часть вполне пригодна. Для повторной переработки на тех же агрегатах после соответствующей трансформации в гранулы. При этом количество добавляемых к свежему сырью отходов не должно превышать 30-40 %.

Литьевой метод раздувного формования предполагает получение заготовки методом литья под давлением.

В этом случае расплав из цилиндра термопластавтомата впрыскивается в литьевую форму и трубчатая заготовка оформляется в зазоре между стенками формы и внутренним пустотелым сердечником. Заготовке может быть придана необходимая форма, причем горловина, ручки, необходимые приливы на наружной поверхности оформляются сразу при литье. После окончания процесса литья форма размыкается, и сердечник вместе с горячей заготовкой перемещается в другую форму, где после смыкания полуформ осуществляется процесс раздува за счет подачи сжатого воздуха во внутреннюю полость. При этом размер изделия увеличивается, а толщина стенок уменьшается. Так как геометрическая форма заготовки задается заранее, этот метод позволяет получать сложные по конфигурации изделия, изделия с равномерной толщиной стенок и необходимым соотношением толщины стенок в разных его частях, но из-за необходимости переоборудования литьевых машин, а также из-за высокой стоимости литьевых и раздувных форм этот метод находит ограниченное применение.

В последние годы получил распространение вариант этой технологии, когда стадии отливки заготовки и ее раздува разделены. Заготовка, называемая преформой, отливается в многогнездной форме на термопластавтомате и полностью охлаждается. Нередко преформы являются самостоятельной товарной продукцией. Раздув заготовки осуществляется воздухом на специальном агрегате после ее предварительного разогрева, с последующим охлаждением в форме.

Изготовление пустотелых изделий раздуванием позволяет уменьшить толщину их стенки, сокращает расход дорогостоящего полимерного материала (например ПЭТФ) вследствие отсутствия пресс-кантов и приливов, увеличивает прочность и улучшает внешний вид продукции.

Следует, однако, подчеркнуть, что все изделия, изготовленные за счет реализации высокоэластической деформации, обладают способностью необратимо утрачивать свою форму при повышении температуры выше определенного предела, что накладывает ограничения на температурный интервал их эксплуатации. Таким пределом является температура размягчения.

Ротационное формование

Этот метод переработки позволяет получать полые изделия разнообразных форм и размеров из термопластичных материалов, используемых в виде порошков или паст (пластизолей). Процесс ротационного формования отличается простотой и включает три основных стадии. На первой из них I в холодную форму, представляющую собой полую раковинообразную конструкцию, загружается определенное количество полимерного материала. Далее (стадия II) закрытую форму помещают в камеру нагрева, где и происходит собственно процесс формования. При этом с помощью соответствующих устройств форма приводится во вращение относительно двух осей. При вращении с относительно невысокой частотой (от 0,4 до 2,0 с-1) расплавленный полимер распределяется по стенкам формы.

Третья стадия III заключается в охлаждении формы с отформованным изделием, которое может осуществляться с помощью холодного воздуха или водяного тумана; при этом форма продолжает вращаться для полного и равномерного затвердевания полимера по всей поверхности формы. После завершения охлаждения форма раскрывается и готовое изделие извлекается из нее; благодаря усадке материала при охлаждении изделия процесс извлечения не вызывает затруднений.

Ротационное формование широко используется для изготовления разнообразных изделий самой различной величины и формы — деталей приборов, корпусных деталей мебели, бочек и контейнеров, лодок и др. Процесс происходит при атмосферном давлении, условия формования исключают значительные нагрузки на стенки оснастки, поэтому формы для ротационного формования могут иметь тонкие стенки и относительно дешевы. Объем формуемых изделий определяется размерами камеры нагрев; и может достигать нескольких кубометров. Для обогрева форм используется горячий воздух (электрические нагреватели) или сжигаемый природный газ.

К преимуществам ротационного формования, по сравнению с другими методами получения полых изделий, относятся простота изготовления и дешевизна оснастки, возможность варьирования толщины стенки (вплоть до 15-20 мм), очень низкий уровень остаточных напряжений в готовом изделии, практически полное отсутствие отходов и, как следствие, экономичность процесса. Благодаря интенсивному развитию в последние годы обнаружен ряд технологических преимуществ этого метода — возможность получения изделий сложной формы со стенками различной толщины, многослойных изделий и т. д.

Низкая стоимость оснастки в ряде случаев делает экономически целесообразным использование ротационного формования для получения малых партий изделий. Недостатками процесса являются длительность цикла формования, ограниченный выбор материалов и их относительно высокая стоимость, низкий уровень размерной точности готовых изделий.

Для переработки методом ротационного формования используются в основном несколько видов термопластов. Это, в первую очередь, полиэтилен, доля которого составляет от 85 до 95% продукции, причем применение находят практически все виды этого полимера, в том числе сшивающийся. Его достоинства — высокая термостабильность, легкая перерабатываемость гранул в порошок, относительно низкая стоимость. Разработана, например, специальная марка полиэтилена, показатель текучести расплава которой при переработке уменьшается с 5 до 1,5. Этот материал характеризуется повышенным значением ударной вязкости при низких температурах (до -30 °С).

Среди остальных полимеров лидирующую роль занимают пластизоли на основе ПВХ (от 10 до 13%), объем производства которых достаточно велик и имеются марки, специально предназначенные для ротационного формования. Для ротационного формования разработаны также специальные марки полиамидов, поликарбонатов, полипропилена, полистирола. Возможно изготовление этим методом изделий из термореактивных полимеров — полиуретанов, эпоксидных композиций и др., а также совмещение процесса полимеризации и формования (например при полимеризации капролактама). В этом случае в форму загружают композицию на основе капролактама и катализатор. В процессе ротационного формования происходит полимеризация. Из смесей полимеров, отличающихся друг от друга значениями температуры плавления, получают двухслойные изделия с различными свойствами слоев. Для предотвращения окисления некоторых термопластов (например полиамидов) в форму нагнетают инертный газ. Иногда ротационное формование осуществляют с использованием жестких вкладышей и вставок.

Для модификации свойств материалов, перерабатываемых ротационным формованием, широко используются различные добавки — термо- и светостабилизаторы вспенивающие агенты, наполнители (в т. ч. и волокнистые) и др. В России конкурентнеспособное по ценам и качеству сырье, пригодное для ротационного формования в настоящее время не производится, кроме ПЭ и ПВХ.

Формы для ротационного формования достаточно просты и изготавливаются из стали или алюминия. Алюминиевые формы используют для изготовления сложных изделий, а также при изготовлении нескольких одинаковых форм (литьем). При эксплуатации формы подвергаются значительным термическим напряжениям из-за многократных циклов нагрева (до 300 °С) и охлаждения.

Выбор оборудования для ротационного формования определяется конфигурацией и размерами изделия, типом материала и серийностью производства. Применяются одно-, трех- и четырехшпиндельные установки непрерывного и периодического действия. Формы крепятся на так называемой «руке», которая осуществляет вращение формы и перемещает ее из одной зоны в другую. Чаще всего для повышения производительности используют машины карусельного типа с тремя или четырьмя «руками». Это позволяет увеличить производительность, сократить расход тепла и получать несколько разных изделий одновременно. Каждая «рука», на которой смонтировано несколько форм, находится в соответствующей зоне технологического цикла. Время нахождения «руки» в определенной зоне определяется временем формования самого трудоемкого изделия, после чего производится одновременное перемещение «рук» в следующую зону технологического цикла.

Ротационное формование относится к практически безотходным процессам. При конструировании ротационных форм можно достичь 100% выхода изделий из исходного сырья. Бракованные изделия и удаляемые части изделий утилизируются, а полученные материалы используются для изготовления новых изделий.

Центробежное формование

Центробежное формование (иногда центробежное литье) — метод изготовления изделий в виде тел вращения — цилиндров (труб), втулок, подшипников скольжения и т. п. Этот метод, как правило, находит применение в тех случаях, когда размеры (габариты или толщина) изделия не позволяют изготовить его другими методами.Для получения изделий по такой технологии в нагретую форму, торцы которой закрыты фланцами, загружают порцию расплава термопласта или жидкой смолы с отвердителем. Если термопласт загружают в форму в виде порошка или гранул, плавление полимера и его гомогенизация в обогреваемой форме существенно снижает производительность. Поэтому для ускорения процесса получения изделий нередко применяют экструдер с копильником, откуда в форму подается необходимый объем расплава.В отличие от ротационного формования процесс осуществляется при высоких частотах вращения нагреваемой формы (до 150 с-1), поэтому под действием центробежных сил в материале развивается достаточно большое давление и усадка готового изделия невелика. После охлаждения и остановки снимаются фланцы, изделие извлекают из формы. Обычно внутренний слой изделия имеет более рыхлую структуру и удаляется механической обработкой для получения необходимого внутреннего диаметра. С учетом этого материал дозируют с запасом в 10-15%.Наибольшее распространение этот метод находит в получении толстостенных труб большого диаметра из полиамидов, полиэфиров и других термопластов с низкой вязкостью расплава; из-за склонности этих полимеров к окислению полость формы заполняется инертным газом (СО2, азот). При изготовлении изделий из полиамидов один из вариантов технологии предусматривает загрузку в форму расплава капролактама и катализатора анионной полимеризации, после чего нагретая форма приводится во вращение. Из-за высокой скорости полимеризации длительность процесса практически не зависит от толщины стенок формуемого изделия.

ID объявления: 79064bff6976f30b

Тэгов нет

223 всего просмотров, 0 просмотров за сегодня

  

Заполните форму вашими данными, чтобы отправить сообщение автору объявления.

РАБОТАЕМ НА ВСЕХ ТЕНДЕРНЫХ ПЛОЩАДКАХ

99887

ИСПЫТАНИЕ НЕГОРЮЧИХ МАРОК ПЕНОПЛАСТА

ИСПЫТАНИЕ НЕГОРЮЧИХ МАРОК ПОРОЛОНА