About admin

  • На сайте с: 21.11.2015

Текст объявления

Ads / Latest items listed

Sorry, no listings were found.

Posts / Recent blog posts
Комментарии к записи Применение углепластиков отключены

Применение углепластиков

| УГЛЕПЛАСТИКИ | 13.11.2008

Мы знаем, что применение металлов чрезвычайно многообразно из стали можно сделать и штопор, и корпус военного корабля; из алюминия изготавливают и оберточную фольгу, и самолеты и т. д. Этого нельзя сказать об углепластиках, хотя область их применения простирается от изготовления бытовых предметов и до использования в космических аппаратах. Углепластики обладают комплексом весьма ценных свойств, и поэтому их применение постоянно расширяется. В данной главе сделана попытка обобщить различные направления использования этих перспективных материалов. Однако так как углепластики являются сравнительно новыми материалами, во многих областях их применение еще находится на стадии становления и развития. Поэтому мы ограничимся оценкой ситуации в первой половине 1980-х годов.

Применение углепластиков в аэрокосмической промышленности

Композиционные материалы на основе углеродных волокон наряду с применением их в авиационной технике эффективно используются в конструкциях космических летательных аппаратов. Это обусловлено тем, что они обладают сравнительно низкой плотностью. Их высокая стоимость в этом случае не является сдерживающим фактором, так как масштабы применения углепластиков в рассматриваемой области техники не столь велики. Считается, что количество углеродных волокон, используемое в этой области, составляет приблизительно 10% объема их производства. Однако точно оценить эту величину нельзя, так как данная область применения композиционных материалов на основе углеродных волокон почти всегда связана с самыми совершенными технологиями, имеющими оборонное значение и засекреченными.




Искусственные спутники

Прежде всего следует напомнить о первом запуске в 1974 г. военно-воздушными силами США геостационарного метеорологического спутника массой 680 кг, в котором было использовано покрытие из углепластика массой 0,5 кг. В 1979 г. был запущен более совершенный геостационарный спутник связи Intelsat V массой 1400 кг. Уже более 58% деталей (> 45% массы спутника) были изготовлены из высококачественных композиционных материалов, главным образом углепластиков. Одни из основных деталей — отражающая антенна диаметром 2,9 м и каркас солнечной батареи длиной 17 м. Крупногабаритный каркас солнечной батареи был складным и раскрывался уже на околоземной орбите. В Японии углепластики были использованы, например, при изготовлении параболической антенны геостационарного спутника связи CS-2a, запущенного в феврале 1983 г. Приведенные примеры свидетельствуют о том, что углепластики — важнейший тип конструкционных материалов для изготовления элементов конструкций искусственных спутников Земли.

В настоящее время проектируются искусственные спутники с корпусом из углепластиков. Например, Национальным управлением США по аэронавтике и исследованию космического пространства (НАСА) планируется запуск космического спутника-телескопа. Этот телескоп предполагается изготовить с широким использованием углепластиков. По сравнению с лучшими наземными телескопами четкость изображения космического телескопа будет в 102 раз выше, а разрешающая способность — в 10 раз. В Японии в настоящее время на основе углепластиков разрабатываются каркасы корпусов искусственных спутников Земли, скелетные конструкции солнечных батарей и т. д.

Использование углепластиков в искусственных спутниках обусловлено не только их низкой плотностью, но и еще одной важной причиной. Дело в том, что любая конструкция в космосе, естественно, находится в вакууме. Поэтому сторона конструкции, обращенная к Солнцу, нагревается до температуры > 100 °С, а противоположная сторона охлаждается до температуры ниже -200 °С. В таких условиях нужно учитывать тепловую деформацию материалов. В направлении армирующих волокон углепластики имеют отрицательное значение коэффициента теплового расширения [ (-1… -2) • 10~7/К] , и при рациональном проектировании конструкции можно добиться того, чтобы коэффициент теплового расширения ее материала был близок к нулю. Высокая разрешающая способность рассмотренного выше космического спутника-телескопа обусловлена главным образом именно этим. Коэффициент теплового расширения материала, из которого изготовлены элементы его конструкции, лежит в интервале ±0,18 • 10~б/К.

Применение углепластиков в самолетостроении

Общеизвестно, что благодаря высокой удельной прочности и удельной жесткости композиционные материалы, армированные углеродными волокнами, широко применяются в качестве основных конструкционных материалов в самолетостроении. Высокие механические характеристики углеродных волокон позволяют получать высококачественные материалы — углепластики.

Эффективность применения углепластиков в самолетостроении

Масса самолета без топлива и коммерческой нагрузки примерно в два раза меньше массы снаряженного самолета, в том числе около 30% приходится на различные конструкции планера. Снижение веса этих конструкций благодаря использованию современных материалов позволяет уменьшить габариты двигателя, размеры оперения и т. д. и приводит к снижению расхода горючего. Снижение массы конструкционных материалов всего на 1 кг приводит к снижению общей массы самолета на 3-7 кг. Использование композиционных материалов в производстве самолетов позволяет также снизить их общую стоимость и гибко варьировать условия проектирования.

Как указывалось выше, использование углепластиков благодаря анизотропии их деформационно-прочностных свойств дает возможность создавать материалы с заданным распределением жесткости и прочности. В настоящее время ведется разработка самолетов нового поколения: вертикального взлета, типа «летающее крыло», с длинными узкими крыльями и других типов. Создание таких самолетов с использованием известных металлических материалов весьма затруднительно, альтернативой может служить применение углепластиков. Преимущество применения пластмасс в авиастроении состоит также в возможности одностадийного формования крупных элементов конструкций. При этом уменьшается количество деталей и сокращаются затраты на сборку, что ведет к снижению стоимости самолетов.

Методы формования деталей самолетов

В настоящее время формованные из углепластиков конструкционные материалы для самолетов в основном можно подразделить на следующие группы: 1) двутаврового или Н-образного сечения с неравномерным профилем; 2) плоские. Наружные листы для Сандвичевых сотовых и других трехслойных конструкций почти всегда имеют простую форму. Такие элементы конструкций обычно изготавливаются методом автоклавного формования. На рис. 6.5 показано получение сандвичевой конструкции с использованием препрегов и одновременным отверждением и склеиванием компонентов. При изготовлении коробчатых конструкций предварительно сформованные листы обшивки, лонжероны и ребра собирают внутри автоклава и затем склеивают. Используемые при этом клеи так же, как и препреги, строго регламентированы стандартами. С другой стороны, для изготовления лонжеронов, ребер и других изделий сложной формы с изменяющимся сечением используют так называемый метод термокомпрессионного формования, который основан на эффекте теплового расширения эластомеров, хорошо отделяющихся затем от поверхности изделия.

Военные самолеты

Для создания военных самолетов, в частности истребителей, требуются Материалы с особенно хорошими характеристиками. Уже около 25 лет в Научно-исследовательском институте материаловедения Военно-воздушных сил США разрабатываются углепластики с улучшенными механическими свойствами. Такие материалы позволяют значительно снижать массу самолетов-истребителей.

Характеристики Т/М у американских истребителей ниже, чем у советских, что обусловливает различие тактико-технических характеристик истребителей. В связи с этим в США особенно активизируется разработка углепластиков для самолетостроения, которые используются наряду с конструкционными материалами на основе борных волокон. Углепластики составляют около 2% массы самолетов F-14 и F-15 и используются вместе с боропластиками для производства верхних плоскостей несущих крыльев, створок люков шасси и аэродинамических тормозов. В самолете F-16 из углепластиков изготавливают также горизонтальное хвостовое оперение, вертикальные стабилизаторы, и некоторые детали, которые ранее получали из боропластиков. Первоначально аэродинамический тормоз самолета F-15 изготовляли из_металлических материалов. Использование углепластиков в качестве наружного материала сандвичевой конструкции с заполнением алюминиевыми сотами позволяет снизить массу аэродинамического тормоза с 50,8 до 38,6 кг, т. е. приблизительно на 24%.

В самолете F-18 углепластики составляют уже 10,3% всей массы конструкционных материалов и используются для изготовления горизонтального хвостового оперения, рулей направления, вертикальных стабилизаторов, аэродинамических тормозов, закрылков, верхних плоскостей несущих крыльев и других важнейших деталей.

Материалы на основе углепластиков впервые начали применять в самолете F-14, а для самолета F-18 они уже завоевали себе место в качестве одного из наиболее эффективных конструкционных материалов. Для этого пришлось пересмотреть сложившееся ранее мнение, что алюминий, титан, высокопрочная сталь и другие металлические материалы являются основными конструкционными материалами для изготовления деталей самолетов. Благодаря уменьшению массы сейчас удается создать новые типы более совершенных истребителей. В самолетеY AV-8В около 17% массы приходится на обшивку несущих крыльев, закрылки и вспомогательные крылья, а в новой модификации «AV-8B Харриер», а) из углепластиков изготовлена также панель фюзеляжа и общая масса деталей самолета из углепластиков составляет около 26%. Лонжерон и ребро такого крыла имеют двутавровое сечение, а стенка лонжерона — синусоидальную форму; это типичный пример конструкции крыла, изготовленного из композиционных материалов. Такая же конструкция использована и в горизонтальном хвостовом оперении бомбардировщика В-1.

В европейских странах также применяют углепластики для облегчения деталей военных самолетов. Из углепластиков изготавливают воздушные тормоза самолета «Альфа-джет» (ФРГ), концевую часть крыла самолета «Мираж F-1» (Франция), элероны, створки люков шасси и рули вертикального хвостового оперения самолета «Мираж 2000» (Франция). В самолете «Мираж 2000» из комбинации углепластика с боро-пластиком изготовлены рули направления. В самолете «Ягуар» (Великобритания) примерно 15% массы конструкционных материалов составляют углепластики, а в самолете ASX-10 (Франция) — около 16%.

В Японии различные авиационные конструкции на основе углепластиков разрабатываются в основном под эгидой Управления обороны. Проводятся летные испытания самолетов Т-2 (рули направления и створки люков шасси из углепластика), PS-1 (направляющие предкрылки из углепластика) и С-1 (главные интерцепторы и другие детали из углепластиков). Планируется изготовлять из углепластиков горизонтальное и вертикальное хвостовое оперение, закрылки, элероны, аэродинамический тормоз, створки люков шасси и другие детали проектируемого учебного самолета среднего класса марки МТХ.

Применение углепластиков

В течение 20 лет, начиная с самолета F4C и вплоть до самолета F-18A, алюминиевые сплавы играли основную роль, но в будущем предполагается, что ведущие позиции будут занимать углепластики, гибридные армированные пластики на основе сочетания углеродных и стеклянных волокон или сочетания углеродных волокон и волокон Кевлар и другие композиционные материалы.

Предполагается, что материалы из углепластиков в истребителе нового поколения ADCA (Advanced Design Composite Aircraft) будут составлять около 69% массы конструкционных материалов, а в беспилотном зкспериментальном самолете HIMAT (Highly МапеитаЫе Aircraft Technology) — около 25%.

Применение углепластиков в гражданском авиастроении отличается от их использования в военных самолетах. Исходя из требований безопасности новые материалы для гражданских самолетов до их использования в серийном производстве самолетов обычно проходят различные испытания в течение 50 000 ч. В США такие испытания проводятся различными авиастроительными фирмами совместно с НАСА. Первыми в 1973 г. были испытаны следующие детали из углепластиков: интерцепторы для самолета «Боинг В-737» и рули направления самолета DC-10. Интерцепторы самолета «Боинг В-737» представляют собой сандвичевую конструкцию с внешним слоем из углепластика и алюминиевым заполнителем. Благодаря использованию углепластиков достигнуто снижение массы интерцепторов с 6,4 до 5,45 кг, т. е. приблизительно на 15%. В рулях направления самолета DC-10 использована коробчатая конструкция, состоящая из лонжеронов и ребер с внешним слоем из углепластика. При этом достигнуто снижение массы рулей направления примерно на 35%.

В 1976 г. НАСА в рамках проекта АСЕЕ (Aircraft Energy Efficiency Program) выдвинуло задачу снижения расхода топлива на 50%. Согласно этому проекту в экспериментальных самолетах композиционные материалы были опробованы как в качестве вспомогательных конструкционных материалов для изготовления рулей набора высоты, рулей направления, вспомогательных крыльев и т. д., так и в качестве основных конструкционных материалов для горизонтального и вертикального хвостового оперения и других деталей самолетов). Уже более пяти лет перечисленные детали работают в самолетах, находящихся в эксплуатации.

Композиционные материалы на основе углепластиков уже проходят испытания в конструкциях гражданских самолетов, и различные авиастроительные фирмы переходят от стадии активного проектирования к применению на практике таких материалов. Например, в самолете «Боинг 767» использовано около 2 т углепластиков, гибридных материалов на основе углеродных и стеклянных волокон или углеродных волокон и волокон Кевлар и других гибридных композиционных материалов. Их использование позволило снизить массу самолета приблизительно на 900 кг.

В январе 1981 г. первый успешный полет совершил самолет «Ля фан 2100» производства фирмы «Ля авиа». Все детали фюзеляжа самолета, за исключением обтекателя радиолокационной антенны и воздушного винта, были изготовлены из углепластиков (общая масса около 570 кг). Такое распределение различных материалов в конструкции отвечает идеям создания самолетов следующего поколения.

Из углепластиков изготавливают также лопасти несущего винта и другие элементы конструкций вертолетов. Их используют в вертолете марки ВК-117 совместного производства фирм «Кавасаки дзюкоге» (Япония) и МВВ (ФРГ), в вертолетах SA 365 и «Пума 360» производства фирмы «Синиас» (Франция) и т. д.

Применение углепластиков в военной промышленности

В этой отрасли разработка и применение композиционных материалов на основе углеродных волокон в основном направлена на создание военных самолетов. Сведений о применении углепластиков в производстве другой военной техники очень мало вследствие засекречивания проводимых работ.

Использование углепластиков для изготовления спортивных изделий

Применение композиционных материалов на основе углеродных волокон для изготовления спортивных изделий обусловлено снижением их массы благодаря превосходным механическим свойствам углепластиков. Объем высококачественных спортивных изделий из углепластиков, выпускаемых в Японии, превышает объем производства изделий из углепластиков, применяемых в аэрокосмической технике и в других отраслях промышленности. Для производства спортивных изделий используется около 70% всех углепластиков. Отметим, что вес удочек для ловли форели из углепластиков на основе высокопрочных углеродных волокон составляет 400-500 г, а из углепластиков на основе углеродных волокон высокомодульного типа -около 300 г. Удочки из стеклопластиков весят 700-800 г. Благодаря такому снижению веса удочки из углепластиков привлекли внимание многочисленных любителей рыбной ловли. Хорошие демпфирующие характеристики углепластиков в сочетании с их высокой жесткостью позволяют рыболову чувствовать момент взятия форелью наживки.

При проектировании и изготовлении типичных спортивных изделий обычно выбирают следующие направления ориентации углеродных волокон: 1) в удилищах волокна ориентируют в основном вдоль оси изделия и частично в поперечном направлении путем радиальной намотки (углеродных или стеклянных волокон); 2) в клюшках для игры в гольф применяют сочетание ориентации волокон вдоль оси трубки с их ориентацией под углом ± 22,5° к оси; 3) в каркасах теннисных ракеток используют продольно-поперечную ориентацию волокон в сочетании с ориентацией волокон под углом ± 45°.

В спортивном судостроении углепластики все шире используют для изготовления мачт, рангоутов, румпелей и других деталей яхт. Например, мачта яхты марки «Ямаха Y-20 S», изготовленная из алюминия, имеет вес 16 кг, а из углепластика — 9,4 кг, т. е. приблизительно на 41% легче. Уменьшение массы шверта приблизительно на 60 кг позволяет снизить массу яхты примерно на 80 кг.

Рассмотрим теперь пример использования углепластиков в производстве гоночных автомобилей. Благодаря введению углепластиков в конструкцию стеклопластикового корпуса гоночного автомобиля типа F-II масса корпуса снижается с 30,8 до 21,5 кг, т. е. приблизительно на 30%. Одновременно понижается центр тяжести автомобиля и возрастает его устойчивость на поворотах.

Применение углепластиков в медицине

В медицине углепластики используют ввиду их малой плотности и способности пропускать рентгеновские лучи. Например, ведутся поиски путей снижения веса протезов рук и ног, кресел-каталок, тростей, приспособлений для растяжения костей после переломов и т. д. Однако в этой области углепластики еще не применяются в массовом масштабе и изделия из них находятся на стадии разработки. В настоящее время исследуется возможность создания искусственных костей из углерод-углеродных армированных композиционных материалов.

Углепластики незначительно поглощают рентгеновские лучи, обладают высокой жесткостью и поэтому применяются в рентгеновской аппаратуре. Углерод почти в девять раз меньше поглощает рентгеновские лучи, чем алюминий. Коэффициенты пропускания и рассеяния рентгеновских лучей различными листовыми материалами, ориентированными перпендикулярно направлению рентгеновского излучения. Углепластик по сравнению с алюминием приблизительно в 5 раз меньше поглощает рентгеновские лучи и в 2,5 раза меньше их рассеивает, т. е. является весьма хорошим материалом для рентгеновской аппаратуры.

Применение углепластиков в автомобилестроении

Композиционные материалы на основе углеродных волокон применяются в автомобилестроении несколько в меньшем масштабе, чем в аэрокосмической промышленности. Это связано с высокой стоимостью этих материалов, а также с отставанием в разработке методов массового производства композиционных материалов. Например, стоимость 1 кг конструкции современных автомобилей из традиционных материалов составляет приблизительно 1000 иен. В то же время стоимость углепластиков — от десяти тысяч до нескольких десятков тысяч иен за 1 кг, т. е. в 10 или в несколько десятков раз выше. При использовании углепластиков в аэрокосмической промышленности высокая цена материала не столь существенна из-за высокой стоимости всего изделия, поэтому можно использовать довольно трудоемкий метод автоклавного формования, а в автомобилестроении возможность применения углепластиков лимитируется стоимостью материала и сложностью существующих методов формования.

Тем не менее когда в 1973 г. возник нефтяной кризис, остро встал вопрос экономии энергии. К тому же с ростом парка автомобилей обостряется проблема загрязнения окружающей среды. В связи с этим во всех странах стали интенсивно проводить теоретические и прикладные исследования по уменьшению потребления горючего, количества выхлопных газов и шума автомобилей, повышению их безопасности и т. д. Естественно, что в этих исследованиях приняли участие и фирмы-изготовители углепластиков. Все это привело к ускоренной разработке углепластиков для применения их в автомобилестроении с целью снижения массы автомобилей.

Например, в США в 1975 г. введены контрольные цифры по расходу горючего для легковых автомобилей в зависимости от года их производства. Для автомобилей выпуска 1978 г. минимальный пробег при использовании 1 л горючего должен составлять 7,6 км, а для автомобилей выпуска 1985 года — 11,6 км/л. Если же характеристики автомобиля не соответствуют этим контрольным цифрам, то на фирму, производящую автомобили, налагается штраф в размере 5 дол. за каждые не достающие до контрольной цифры 0,0042 км/л для каждого автомобиля.

Экономия горючего достигается путем снижения массы автомобиля, а также благодаря повышению эффективности работы двигателя, улучшению аэродинамических характеристик, применению системы турбо-наддува и т. д. Для повышения экономичности автомобиля на 0,0042 км/л необходимо снизить его массу приблизительно на 7 кг. Это означает, что для достижения контрольных цифр по расходу горючего только путем снижения массы автомобиля требовалось уменьшить ее за 7 лет приблизительно на 660 кг. Предполагается посредством замены деталей из стали и чугуна на детали из углепластиков, стеклопластиков, армированных углеродными или стеклянными волокнами термопластов, и других конструкционных полимерных материалов снизить массу автомобилей за 10 лет приблизительно на 320 кг. Такое снижение массы автомобилей соответствует приблизительно лишь 50% ее величины, необходимой для достижения контрольных цифр по расходу горючего. Поэтому наряду с использованием новых перспективных материалов следует уменьшать размеры автомобилей, увеличивать эффективность использования энергии и осуществлять другие меры по снижению расхода горючего.

В 1977 г. фирма «Форд» сообщила о плане разработки облегченного экспериментального автомобиля, в котором будут использованы в основном углепластики и гибридные армированные пластмассы на основе углеродных и стеклянных волокон. Первый опытный экземпляр такого автомобиля был создан в мае 1979 г. В опытной модели «Форд LTD» 1979 г. из углепластиков, гибридных и других композитов на основе углеродных и стеклянных волокон были изготовлены кузов, шасси, двери, бампера и другие детали автомобиля. В результате использования конструкционных полимерных материалов масса автомобиля снизилась с 1698 до 1137 кг, т. е. приблизительно на 33%, а экономичность повысилась с 7,2 до 9,7 км/л, т. е. на 35%.

Фирмы «Дженерал моторе» (США), «Крайслер» (США), «Мерседес Бенц» (ФРГ) и «Вольво» (Швеция) разрабатывают приводные (карданные) валы, рессоры и другие детали из углепластиков, а фирма «Плимут» (США) ведет работы по применению углепластиков в деталях двигателя. Например, значительное повышение экономичности двигателя достигается благодаря снижению массы поршневых пальцев, шатунов, штока толкателя клапана, клапанного коромысла и других деталей двигателя. По сравнению с другими материалами использование углепластиков, в том числе армированных волокнами термопластов, экономически целесообразно. Полимерная матрица должна выдерживать в условиях эксплуатации высокие температуры и нагрузки. Поэтому изучается возможность использования в качестве полимерных матриц термостойких эпоксидных смол, полиимидных смол, полиэфирсульфонов, полиэфиркетонов и других смол.

Рассмотрим вопрос об изготовлении листовых рессор. Жесткость одной стальной пластины рессоры, выдерживающей определенную нагрузку (пластина с определенной толщиной), оказывается очень высокой -постоянная пружины будет ниже необходимой. Поэтому до настоящего времени использовались рессоры, состоящие из нескольких пластин (в легковых автомобилях — из 2-4 пластин, а в грузовых автомобилях — из 10 и больше пластин). Если же использовать углепластики, обладающие к тому же очень высокими усталостными характеристиками, то можно существенно снизить массу листовых рессор. Используя гибридные композиционные полимерные материалы на основе стеклянных и углеродных волокон, можно получить еще более хорошие характеристики листовых рессор, чем при использовании углепластиков. Листовые рессоры из армированных пластиков можно изготавливать методом горячего прессования с высокой экономической эффективностью.

При использовании углепластиков для изготовления приводных (карданных) валов ожидается: 1) снижение их массы; 2) увеличение критической скорости вращения R = К (EI/WL^y’^ (К — постоянная, Е — модуль упругости при изгибе, / — момент сопротивления сечения, W — масса единицы длины вала, L — длина приводного вала); 3) увеличение длины приводного вала (возможность изготавливать не двухступенчатые, а одноступенчатые валы); 4) повышение вибрационных и снижение шумовых характеристик валов; 5) повышение их коррозионной стойкости.

Ожидается, что при расширении области применения углепластиков их стоимость снизится до 5000 иен/кг. Разработка сравнительно дешевых методов массового производства в ближайшем будущем приведет к тому, что различные композиционные материалы, и в первую очередь углепластики, получат широкое применение в автомобилестроении.

Применение углепластиков в электронике и электротехнике

Углеродные волокна обладают высокой электропроводностью. Поэтому применение композиционных материалов на их основе в электронике и электротехнике имеет свои особенности по сравнению со стеклопластиками. Стеклопластики, обладающие электроизоляционными свойствами и пропускающие электромагнитные волны, в основном применяются для изготовления печатных плат, элементов индукционных катушек, различных соединительных электроизолирующих деталей, прозрачных для радиоволн обтекателей антенн и корпусов приборов и т. д. Армированные углепластики, наполненные углеродными волокнами термопласты и другие композиционные материалы на основе углеродных волокон имеют высокие значения прочности, жесткости, демпфирующих характеристик, низкий коэффициент линейного расширения, антифрикционные свойства и в то же время способны экранировать электромагнитные волны. В радио- и электротехнике они часто применяются для изготовления конических поверхностей репродукторов, резонаторов звуковых аппаратов, кронштейнов повышенной жесткости, шестерен, кулачков, валов, рефлекторов параболических антенн, элементов конструкций, экранирующих электромагнитные волны и т. д.

В 1976 г. Федеральная комиссия США по связи регламентировала уровень напряженности электрического поля, генерируемого электронными приборами, работающими в диапазоне частот выше 10 кГц. В связи с этим возросла актуальность разработки материалов, экранирующих электромагнитные помехи. Экранирующие покрытия изготавливают как из обычных углеродных волокон, так и с использованием углеродных волокон, покрытых слоем никеля, меди или другого металла. Для получения композитов используют совмещение углеродных волокон с волокнами из термопластов (с помощью инжекционного формования) или метод горячего прессования углепластиков на основе термореактивных смол.

21673 всего просмотров, 0 просмотров за сегодня

Комментарии к записи Полимеризация и сополимеризация винилацетата отключены

Полимеризация и сополимеризация винилацетата

| Поливинилацетат | 13.11.2008

Способность к полимеризации и сополимеризации любого мономера характеризуется величиной его электрического заряда на ненасыщенной двойной связи, коэффициентом сопряжения заместителя с двойной связью (резонансной стабильностью) и стерическим эффектом. Два первых фактора могут быть оценены с помощью полуэмпирической схемы Q — е Алфрея и Прайса, устанавливающей количественные соотношения для мактивности различных мономеров.

Читать далее »

13098 всего просмотров, 0 просмотров за сегодня

Комментарии к записи Получение углеродных волокон и их свойства отключены

Получение углеродных волокон и их свойства

| УГЛЕПЛАСТИКИ | 13.11.2008

Армированные пластмассы представляют собой полимерную матрицу, упрочненную волокнами. Свойства армированных пластмасс определяются прежде всего характеристиками армирующих волокон, в том числе углеродных. Техника получения волокнообразного углерода путем прокаливания хлопчатобумажной нити известна еще со времени изобретения лампы накаливания. В Японии был разработан метод получения углеродных волокон путем высокотемпературной обработки волокон из полиакрилонитрила. Эту разработку стимулировала перспектива улучшения свойств пластмасс путем армирования их углеродными волокнами; в результате были созданы современные промышленные материалы с улучшенными свойствами и структурой. Важным направлением материаловедения является также сочетание углеродных волокон с металлической матрицей.

Типы углеродных волокон

Углеродные волокна можно получать из многих полимерных волокон. В этой главе мы рассмотрим вопросы получения и свойства выпускаемых в промышленном масштабе волокон, в частности высококачественных углеродных волокон. В зависимости от режима термообработки углеродные волокна подразделяются на карбонизованные и графитизированные. Вследствие различия их кристаллического состояния первые называют карбоновыми или углеродными, а вторые — графитовыми. По физическим характеристикам они подразделяются на высококачественные и низкокачественные (низкосортные) углеродные волокна. К высококачественным волокнам относятся: 1) высокопрочные углеродные и высокомодульные графитовые волокна, углеродные волокна с повышенной прочностью и удлинением [на основе полиакрилонитрила (ПАН)] ; 2) высокомодульные графитовые волокна [на основе жидкокристаллических (мезофазных) пеков]. К низкосортным волокнам или волокнам общего назначения относятся: 1) низкографитизированные углеродные и графитовые волокна и материалы (на основе ПАН); 2) низкографитизированные углеродные и графитовые волокна и материалы.

Некоторые авторы называют оба типа волокон одним термином «углеродные волокна»; этим термином мы будем пользоваться в дальнейшем изложении.

Для массового производства весьма перспективными являются углеродные волокна на основе пеков, причем волокна на основе обычных пеков являются низкосортными и изотропными, а на основе жидкокристаллических пеков — высококачественными и анизотропными.

Между углеродными волокнами из ПАН и из пеков имеются существенные различия в структуре и механических свойствах, и поэтому ниже будет специально указываться, на какой основе получены волокна. Следует отметить также, что среди высококачественных углеродных волокон (высокопрочных и высокомодульных) существуют различные типы волокон, отличающиеся по прочности и модулю упругости; фирмы-изготовители присваивают таким волокнам разные марки. Высококачественные волокна могут изготавливаться в виде нитей или жгутов, состоящих из 1000, 3000,6000, 10 000 и большего числа элементарных непрерывных волокон. Кроме того, выпускаются ткани из этих волокон, а также жгуты, состоящие из еще большего числа элементарных волокон. При использовании углеродных волокон для армирования пластмасс проводят обработку их поверхности с целью улучшения взаимодействия волокон и матрицы. С этой же целью, а также для улучшения технологических свойств нитей и жгутов и эксплуатационных характеристик углепластиков поверхность волокон подвергается шлихтованию или аппретированию. Для армирования термопластичных матриц используют рубленые волокна размером от нескольких миллиметров до 1-2 см (автор в данном контексте опустил использование в качестве исходного сырья вискозных волокон). Углеродные волокна на основе обычных пеков представляют собой пучки из множества элементарных волокон длиной до 20-30 см и диаметром от долей микрометра до нескольких микрометров или образуют хлопкообразный мат с хаотичным расположением волокон.

В последнее время появилось довольно много термопластичных материалов, армированных непрерывными углеродными волокнами.

В зависимости от типа сырья для производства углеродных волокон, режимов и условий их термообработки они имеют различные прочность, модуль упругости и другие характеристики. С учетом значительного многообразия различающихся по свойствам углеродных волокон предложено обозначать буквами UXYV соответственно режим термообработки, тип исходного сырья, прочность и модуль упругости углеродных волокон. Буква U (вместо U может стоять С или G) обозначает степень графитизации (в соответствии с режимом термообработки), причем значок С соответствует углеродным волокнам, a G — графитовым. Буква X характеризует прочность при растяжении (в мегапаска-лях), которая подразделяется на 1500 единиц. БукваY характеризует модуль упругости при растяжении ( в гигапаскалях), который подразделяется на 150 единиц, а V характеризует тип исходного сырья для получения углеродных волокон: индекс R соответствует вискозе, А — по-лиакрилонитрилу, Р — пеку.

Производство углеродных волокон

Углеродные волокна получают из волокон полиакрилонитрила, жидкокристаллических пеков и обычных пеков.*) В производственном процессе прежде всего изготавливаются исходные волокна, которые затем нагревают в воздушной среде до температуры 200 — 300 °С. Этот процесс для волокон из ПАН называют предварительной обработкой или обработкой для придания огнестойкости, а для пековых волокон — обработкой для придания неплавкости. В ходе такого процесса происходит частичное окисление углеродных волокон. Затем окисленные волокна подвергаются высокотемпературному прогреву. Процесс прогрева в зависимости от режима может привести к карбонизации или графитизации волокон. На заключительной стадии процесса осуществляют обработку поверхности карбонизованных или графитизированных волокон, после чего поверхность подвергают аппретированию или шлихтованию.

Окисление в воздушной среде придает волокнам огнестойкость за счет частичного дегидрирования или окисления, межмолекулярного сшивания и других процессов. При этом повышается стойкость волокон к плавлению при прогревании и сдерживается чрезмерное удаление атомов углерода. В процессе карбонизации по мере роста температуры происходит газификация и удаление всех атомов органического полимера, за исключением атомов углерода. Образовавшиеся углеродные волокна состоят из фрагментов полициклических ароматических молекул, имеющих плоскую шестиугольную сотовую структуру. В процессе графитизации накапливаются ароматические фрагменты. При этом повышаются модуль упругости и электропроводность волокон.

Углеродные волокна на основе полиакрилонитрила

На стадии предварительной обработки волокна ПАН прогревают при температуре 200 — 300 °С в воздушной среде (после этого они становятся черными). Затем проводят карбонизацию этих волокон в среде азота при температуре 1000 — 1500 °С. Оптимальная температура прогрева для получения углеродных волокон с высокими прочностью и удлинением составляет, по-видимому, 1200 — 1400 °С. Высокомодульные углеродные волокна получают при более высокой температуре — около 2500 °С. В процессе предварительной обработки волокна ПАН окисляются и приобретают лестничную структуру. Лестничная структура возникает в результате внутримолекулярной конденсации в процессе карбонизации; при этом образуется полициклическое ароматическое химическое соединение. По мере повышения температуры увеличивается и доля циклических структур. В волокнах, прошедших все стадии температурной обработки, молекулы или ароматические фрагменты расположены таким образом, что главные оси молекул или циклических структур параллельны оси волокон. В процессе прогрева создается натяжение волокон, так что степень их ориентации не снижается. Наиболее важно поддерживать натяжение волокон на стадии их предварительной обработки.

Обычно исходные волокна ПАН содержат несколько процентов привитых мономеров. В зависимости от их содержания изменяется характер термического разложения волокон ПАН. Наличие примесей приводит к замедлению образования лестничной структуры на стадии предварительной обработки волокон или к уменьшению скорости образования сшитой молекулярной структуры. Поэтому огнестойкость углеродных волокон зависит от содержания привитых мономеров в исходных волокнах ПАН. Разумеется, необходимо выбрать подходящие условия предварительной обработки для каждого типа волокон ПАН. Это связано с определенными трудностями, так как термическая обработка влияет на прочность при растяжении и другие характеристики углеродных волокон. Поэтому фирмы-изготовители углеродных волокон используют в каждом отдельном случае соответствующие волокна ПАН.

Рассмотрим влияние условий получения углеродных волокон на их механические свойства. Модуль упругости углеродных волокон возрастает с увеличением температуры прогрева. Прочность при растяжении возрастает с ростом температуры прогрева на стадии карбонизации и снижается на стадии графитизации. Улучшение свойств в процессе карбонизации связывают с ростом ароматических фрагментов, из которых состоят углеродные волокна, с процессом взаимного сшивания этих фрагментов, повышением степени ориентации, усложнением текстуры волокон и другими факторами. Снижение прочности в процессе дальнейшего повышения температуры происходит вследствие порообразования, связанного с выделением газов при реакции неорганических примесных частиц с углеродом.

Углеродные волокна на основе жидкокристаллических пеков

Углеродные волокна на основе жидкокристаллических пеков получают из нефтяных пеков. Если выдерживать такие пеки в течение длительного времени при температуре 350 — 400°С, то происходит реакция конденсации полициклических ароматических молекул, из которых состоят пеки, увеличивается их молекулярная масса и последующее объединение молекул приводит к образованию сферолитов. При дальнейшем прогреве происходит увеличение молекулярной массы, рост сферолитов и формируется непрерывная жидкокристаллическая фаза. Жидкие кристаллы обычно нерастворимы в хинолине и пиридине, но можно получить и жидкие кристаллы, растворимые в хинолине. Волокна на основе жидкокристаллических пеков, содержащих 55-65% жидких кристаллов, характеризуются пластическим течением. Прядение осуществляют при температуре расплава 350 — 400 °С. Если волокна на основе жидкокристаллических пеков нагревать сначала в воздушной среде при температуре 200 — 350 °С и затем в инертной атмосфере, то образуются углеродные волокна с высокоориентированной структурой. Температура прогрева углеродных волокон марки THORNEL Р-55 составляет около 2000°С. Волокна с более высоким модулем упругости получают при еще больших температурах. Производству жидкокристаллических пеков для углеродных волокон с использованием в качестве сырья нефти и каменного угля посвящено значительное количество научных работ. В частности, обращают на себя внимание процессы с использованием стадии гидрирования. Например, волокна можно получать, проводя гидрирование каменноугольных пеков и нафталовой смолы в присутствии тетрагидрохинолина при температуре 380 — 500°С, удаляя при этом фильтрованием и центрифугированием твердые примеси и регенерируя тетрагидрохинолин. Затем, повышая температуру, проводят сгущение пеков. Кроме того, известен метод гидрирования нефтяных пеков с использованием гидрированных ароматических углеводородов.

Когда на поперечном срезе углеродных волокон на основе жидкокристаллических пеков наблюдается некоторое изменение ориентации поверхности, состоящей из сетки ароматических фрагментов, она принимает вид классической радиальной структуры с расходящимися от центра лучами; в процессе термообработки происходит частичное разрушение волокон в направлении прядения, что отмечается появлением клина на поперечном сечении волокна. Этот процесс влияет на механические характеристики углеродных волокон, и поэтому им необходимо управлять. Например, можно варьировать температуру прядения в зависимости от типа пеков. Волокна на основе жидкокристаллических пеков весьма хрупки и требуют осторожного обращения. Поэтому для производства из них непрерывных углеродных волокон требуется специальная технология.

Изменение прочности волокон при повышении температуры прогрева происходит аналогично тому, как это имеет место для углеродных волокон на основе ПАН, но максимум прочности наблюдается при более высоких температурах. Прочность при растяжении волокон из пека, так же как и волокон на основе ПАН, сильно зависит от наличия дефектов. Поэтому необходимо эффективно препятствовать их образованию. При прядении волокон иэ жидкокристаллических пеков легко происходит склеивание волокон между собой. Для предотвращения этого процесса необходимо использовать специальную технику.

Углеродные волокна на основе обычных пеков

Пековые волокна получают также прядением из расплава нефтяных пеков, но при иных условиях. Температуру прядения выбирают в зависимости от температуры их размягчения. При температуре плавления пеков 200°С прядение осуществляют при температуре около 250°С. В процессе прядения за счет центробежных сил из сопла формуют короткие пековые волокна длиной 20- 30 см. Для придания неплавкости пековым волокнам их выдерживают в воздушной среде при температуре 200 — 350 °С, причем нагревание начинают при температуре меньшей, чем температура размягчения, а затем постепенно повышают температуру. Обработанные таким образом волокна прогревают затем в инертной атмосфере при температуре приблизительно 1000 или 2000 °С. Отметим, что пековые волокна также можно получать из каменноугольных пеков.

Обработка поверхности углеродных волокон

Обработка поверхности волокон, используемых для армирования пластмасс. Чтобы армированные углеродными волокнами пластмассы, т. е. углепластики, обладали высокими механическими характеристиками, необходимо обеспечить прочность адгезионной связи между углеродными волокнами и полимерной матрицей, достаточную для передачи напряжения от волокна к волокну. Однако поверхность углеродных волокон, образовавшихся в процессе карбонизации или графити-зации, характеризуется слабой адгезией к ней полимерной матрицы. Следовательно, при использовании углеродных волокон для армирования пластмасс необходимо проводить обработку их поверхности с целью повышения адгезии. Обработка поверхности представляет собой обычно слабое окисление поверхности волокон, не снижающее их прочностных характеристик. Окисление осуществляют, например, в жидкости электролитическим методом.

Адгезия на границе раздела углеродное волокно — полимерная матрица определяется следующими факторами: 1) механическими связями вследствие проникновения полимера в шероховатости поверхности волокон; 2) химическими связями между поверхностью углеродных волокон и полимерной матрицей; 3) физическими связями (обусловленными силами Ван-дер-Ваальса). Основными являются факторы 1 и 2. Образование химических связей в системе углеродное волокно — полимерная матрица определяется химически активными функциональными группами на поверхности углеродных волокон. Эти функциональные группы связываются с атомами углерода соседних ароматических фрагментов. По мере увеличения числа таких атомов углерода усиливается химическая связь между углеродным волокном и полимерной матрицей. В реальном случае при обработке поверхности возрастает число кислотных функциональных групп и соответственно повышается прочность углепластика при межслоевом сдвиге. При использовании высокомодульных углеродных волокон адгезия на границе раздела волокно — полимер определяется преимущественно механическими связями вследствие шероховатости поверхности углеродных волокон этого типа.

Обработка поверхности волокон, используемых для армирования металлов. Для введения в металлы углеродных и других волокон часто используют метод нанесения на их поверхность расплава металлической матрицы. Однако углеродные волокна плохо смачиваются жидкими сплавами на основе Al и других металлов. Поэтому необходимо улучшать их смачиваемость. Для этой цели служит тонкая пленка TiB, наносимая на поверхность углеродных волокон методом химического осаждения в газовой фазе. С помощью этого метода на поверхность углеродных волокон наносят тонкую пленку, восстанавливая газовую смесь TiC + ВС13 парами Zn при температуре 700 °С. Не допуская контакта с воздухом, полученные волокна сразу же покрывают расплавленным металлом. Таким способом, в частности в США, производят проволоку (нитевидный алюминий).

Для улучшения смачиваемости углеродных волокон расплавленным алюминием разработан способ последовательной обработки поверхности волокон расплавами Na, Sn — 2%Mg и алюминиевых сплавов. При армировании углеродными волокнами сплавов на основе Al nMg наряду с улучшением смачиваемости волокон необходимо предотвращать снижение их прочности, которое может происходить при контакте с раплав-ленным металлом. Для решения этой задачи требуются дальнейшие исследования, которые могли бы дать практические рекомендации по сохранению прочности углеродных волокон при контакте с расплавами металлов.

Аппретирование, или шлихтование, углеродных волокон

Углеродные волокна весьма хрупки и легко подвергаются повреждениям и разрушению при переработке. Чтобы предотвратить ухудшение свойств, вызванное этим явлением, осуществляют шлихтование нитей и жгутов, стремясь к образованию шлихтующего покрытия на элементарных волокнах (монофиламентах). При этом шлихтующий агент должен находиться в достаточно размягченном состоянии. Шлихтующие составы могут улучшать адгезию полимерной матрицы к углеродным волокнам, что позволяет использовать такие волокна для армирования пластмасс без дополнительной обработки.

Свойства углеродных волокон

Характеристики углеродных волокон обладают низкой плотностью и высокими прочностью при растяжении и модулем упругости. Следовательно, углеродные волокна имеют высокую прочность и удельный модуль упругости. Наиболее характерной особенностью углеродных волокон является их высокий удельный модуль упругости. Это позволяет с успехом использовать углеродные волокна для армирования материалов конструкционного назначения. Углеродные волокна имеют также низкий коэффициент трения, высокую электропроводность и отрицательный коэффициент термического расширения (вдоль волокон). Они нестойки к окислению в воздушной среде. При контакте с водными растворами кислот и щелочей происходит электро- химическое окисление углеродных волокон. Однако, за исключением случая поверхностного окисления, углеродные волокна обладают высокой химической стойкостью к воздействию кислот и щелочей. Кроме того, они имеют очень высокую теплостойкость.

Модуль упругости углеродных волокон

Модуль упругости при растяжении вдоль волокон (модуль Юнга). Модуль упругости при растяжении высококачественных углеродных волокон высокопрочного типа (на основе ПАН) составляет 200 — 250 ГПа, высокомодульного типа (на основе ПАН) — около 400 ГПа, а углеродных волокон на основе жидкокристаллических пеков — 400 — 700 ГПа.

Высококачественные углеродные волокна состоят из нескольких слоев ароматических шестиугольных ячеек, атомные плоскости которых ориентированы параллельно оси волокна. При высокой температуре прогрева эти плоскости имеют значительную протяженность и высоко ориентированы. В поперечном сечении углеродных волокон атомные плоскости располагаются в беспорядке, а структура обычно подобна структуре луковицы, т. е. повторяет в объеме структуру наружного слоя. Для волокон на основе жидкокристаллических пеков характерна радиальная структура. Наружная поверхность любых углеродных волокон всегда образована сетчатыми плоскостями.

Модуль упругости при растяжении углеродных волокон можно вычислить, исходя из оценки модуля упругости при растяжении кристаллов графита в направлении атомных плоскостей с учетом степени ориентации атомных плоскостей углеродных волокон, которую определяют методом рентгеноструктурного анализа. По мере увеличения степени ориентации атомных плоскостей возрастает соответственно и модуль упругости углеродных волокон. Теоретическое значение модуля упругости при растяжении кристаллов графита в направлении атомных плоскостей составляет 1020 ГПа, а экспериментально определенный модуль упругости волокна марки THORNEL Р-100 равен 690 ГПа, т. е. составляет 68% теоретического значения. При одной и той же температуре прогрева углеродные волокна на основе жидкокристаллических пеков имеют больший модуль упругости при растяжении, чем волокна на основе ПАН.

Модуль упругости при растяжении поперек волокон (модуль жесткости при изгибе)

Модуль упругости при растяжении поперек волокон снижается с ростом модуля упругости при растяжении вдоль волокон. Для углеродных волокон на основе ПАН он выше, чем для волокон на основе жидкокристаллических пеков. На поперечный модуль упругости также влияет ориентация атомных плоскостей в сечении углеродного волокна.

Прочность углеродных волокон

Прочность углеродных волокон при растяжении вдоль их оси. Прочность при растяжении вдоль оси высокопрочных углеродных волокон на Основе ПАН составляет 3,0-3,5 ГПа, волокон с высоким удлинением -4,5 ГПа и высокомодульных волокон — 2,0 -4- 2,5 ГПа. Высокотемпературная обработка волокон второго типа позволяет получить высокомодульные волокна с прочностью при растяжении приблизительно 3 ГПа. Прочность волокон на основе жидкокристаллических пеков обычно равна 2,0 ГПа.

Теоретическое значение прочности при растяжении кристаллов графита в направлении атомных плоскостей решетки составляет 180 ГПа. Если исходить из теоретического значения их модуля упругости при растяжении, принимая, что прочность составляет 1/10 величины модуля упругости, то она должна быть равна 100 ГПа. Экспериментальное значение прочности при растяжении нитевидных монокристаллов графита лишь немного превышает 20 ГПа. Прочность углеродных волокон зависит от условий их производства и микроскопических дефектов и характеризуется определенным законом распределения. Если определять среднюю прочность углеродного волокна, используя распределение Вейбула, и строить ее зависимость от длины измеряемого образца, то, пренебрегая существованием специфических дефектов, можно более корректно охарактеризовать прочность углеродного волокна. Измеренная таким образом прочность при растяжении углеродных волокон высокопрочного и высокомодульного типа на основе ПАН на участке длиной 0,1 мм равна 9 — 10 ГПа. Эта величина составляет 1/20 теоретического значения и 1/2 прочности нитевидных монокристаллов графита. Для углеродных волокон на основе жидкокристаллических пеков измеренная аналогичным образом прочность равна 7 ГПа. Меньшая прочность промышленно производимых углеродных волокон связана с тем, что они не являются монокристаллами и в их микроскопической структуре имеют место значительные отклонения от регулярности. Свойства углеродных волокон можно значительно улучшить вплоть до разрушающего удлинения 2% и прочности 5 ГПа и выше.

Прочность при растяжении промышленно производимых углеродных волокон измеряют на образцах пучков волокон, предварительно пропитанных и отвержденных по изложенному ниже методу. Для установления соответствия между прочностью пучка волокон и прочностью отдельного волокна необходимо принимать во внимание характер распределения по значениям прочности. Например, измеряемая таким методом прочность пучка углеродных волокон высокопрочного типа на основе ПАН, пропитанного эпоксидной смолой, соответствует прочности «сухого» пучка моноволокон длиной 0,6 мм.

Прочность при сжатии углеродных волокон

Деформацию при разрушении углеродных моноволокон определяют, сжимая углепластик вдоль оси волокон. При этом рассчитывают прочность волокон при сжатии, используя значения модуля упругости при растяжении. Зависимость прочности при сжатии углеродных волокон в углепластике от модуля упругости волокон при растяжении носит экстремальный характер. Вначале прочность возрастает, а при дальнейшем росте модуля упругости углеродных волокон их рассчитанная прочность при сжатии снижается.

Электропроводность углеродных волокон

При прогреве полимерных волокон происходит их карбонизация, образуются и растут полициклические ароматические фрагменты, и кар-бонизованные волокна фактически становятся полупроводниками. С ростом температуры прогрева резко снижается их электрическое сопротивление. Однако при температуре выше 1000°С снижение электрического сопротивления замедляется. Примерно до температуры 1600°С для углеродных волокон на основе жидкокристаллических пеков и на основе ПАН зависимости электрического сопротивления от температуры прогрева совпадают. При дальнейшем увеличении температуры электрическое сопротивдение волокон первого типа становится меньше, чем у волокон второго типа.

Поверхностные свойства углеродных волокон

Высокопрочные и высокомодульные углеродные волокна с необработанной поверхностью имеют удельную поверхность около 0,5 м2/г. В результате обработки удельная поверхность несколько возрастает. Активную поверхность, которую занимают соседние атомы ароматических фрагментов, определяют по химической адсорбции кислорода. При обработке поверхности она увеличивается. По мере снижения температуры прогрева активная поверхность также увеличивается. Наружный слой углеродных волокон обладает сильными дренажными свойствами. В целом углеродные волокна имеют очень низкую гигроскопичность.

При нагревании углеродных волокон в воздушной среде они окисляются. Обычно с ростом температуры прогрева и возрастанием степени графитизации способность к окислению поверхности волокон снижается.

Экспериментальные методы исследования свойств углеродных волокон

Для измерения прочности и модуля упругости при растяжении, плотности и линейной плотности углеродных волокон используют экспериментальные методы, описанные в японском промышленном стандарте JIS R 7601. Плотность измеряют по методу вытеснения жидкости или по методу определения градиента плотности в капилляре. Прочность и модуль упругости при растяжении измеряют как на образцах отдельных моноволокон, так и на образцах пучков волокон, предварительно пропитанных связующим и отвержденных. Второй способ полезен при испытании на растяжение углеродных волокон, используемых в углепластиках. Этим методом измеряют как прочность, так и модуль упругости при растяжении выпускаемых промышленностью углеродных волокон. После принятия стандарта JIS R 7601 на встрече представителей фирм-изготовителей углеродных волокон были утверждены стандарты на экспериментальные методы определения содержания влаги в углеродных волокнах, адгезионной способности шлихтующего (или аппретирующего) агента, числа круток волокон, величины рН и объемного электрического сопротивления. Были приняты также стандарты на методы измерения плотности, прочности при растяжении и других характеристик текстильных материалов.

При измерении градиента плотности в капилляре используют столбик жидкости, плотность которой линейно зависит от его высоты. Если в этом методе используется смесь этилового спирта с бромоформом, то можно измерять плотность в интервале 0,81-2,89 г/см3. При испытании пучка волокон на растяжение его пропитку полимером (например, эпоксидной смолой) необходимо осуществлять так, чтобы не оставалось пустот между волокнами в пучке. Для этого пропитанный пучок волокон пропускает через валки, стремясь к обеспечению оптимального количества полимера в образце.

В экспериментах по растяжению углеродных волокон необходимо выбирать способ закрепления и конструкцию захвата пучка волокон и соответствующий амортизирующий материал, помещаемый между пучком волокон и металлической поверхностью зажимов. Наиболее эффективно для этого использовать три слоя алюминиевой фольги. Однако для статистических испытаний образцов в промышленности использовать такую систему прокладок сложно. Поэтому в качестве прокладки между зажимами и пучком углеродных волокон используют вулканизованный каучук, хлопчатобумажные листы, наждачную бумагу и другие материалы. Для захвата образцов следует использовать пневматические зажимы. Определяя модуль упругости по кривой напряжение — деформация, необходимо вносить также поправку на деформируемость зажимного устройства.

22848 всего просмотров, 0 просмотров за сегодня

Штамповка

| Ш | 16.10.2008

Штамповка — это процесс производства изделий термоформованием, который применяется для изготовления объемных изделий небольшой глубины, к которым предъявляются жесткие требования по толщине и качеству поверхности.

Заготовку (пленку, лист, пластину, блок) помещают в специальную форму, матрица и пуансон которой выполнены сопряженными. Форму устанавливают на пресс (гидравлический, пневматический, механический), с помощью которого и осуществляется процесс формования. Горячая штамповка предполагает использование предварительно нагретой заготовки; в зависимости от вида перерабатываемого материала процесс формования осуществляется либо за счет высокоэластической (аморфный полимер вблизи температуры стеклования), либо за счет пластической (кристаллический полимер выше температуры плавления) деформации. Заготовки из термореактивных материалов используют не-доотвержденными и нагревают до температуры размягчения. После завершения процесса формования готовое изделие охлаждают в форме, снабженной системой охлаждения. Необходимое давление составляет 10-70 МПа.

Холодная штамповка осуществляется благодаря способности аморфных полимеров к вынужденной эластичности, а кристаллических — к значительным деформациям ниже температуры плавления. Заготовка заданного объема, нагретая до сравнительно низкой температуры (ниже температуры стеклования или ниже температуры плавления, в случае кристаллических полимеров), деформируется в замкнутой пресс-форме с высокой скоростью; удельные давления формования могут достигать 150-200 МН/м2. Необходимость охлаждения изделия в форме из-за низкой температуры формования практически отпадает.

Метод штамповки отличается высокой производительностью, однако связан с использованием дорогостоящей оснастки, поэтому его применение целесообразно только при производстве крупносерийных изделий с переменной толщиной стенки, повышенной точностью размеров и рельефной поверхностью.

Для изготовления плоских тонкостенных изделий из листовых или пленочных материалов с одновременным оформлением отверстий и вырубкой их из заготовки используют штамповку-вырубку. В этом случае формующая оснастка (штамп) снабжается режущими элементами. В зависимости от материала и конструкции изделия температура заготовки и скорость процесса могут меняться. Усилие вырубки составляет 15 кН на 1 см2 поперечного сечения вырубаемого контура изделия.

Лит.: «Производство изделий из полимерных материалов» ред. В.К. Крыжановского, изд. Профессия, Спб 2004

3586 всего просмотров, 0 просмотров за сегодня

Формование контактное напылением

| Ф | 16.10.2008

Контактное формование напылением представляет собой частично механизированное ручное формование.

Метод применяется для изготовления небольших партий деталей с большой площадью поверхности и для нанесения покрытий. Задача подобных установок заключается в смешении компонентов материала (смолы, от-верждающей системы, наполнителей) и передачи их в пресс-форму. Как правило, в одном из резервуаров со смолой находится отвердитель, а во втором — ускоритель, в то время как стекловолокнистый ровинг разрезается в головке. Как и ручное формование, контактное формование напылением осуществляется в монолитных пресс-формах. Уплотнение нанесенных напылением компонентов выполняется теми же устройствами, которые используются и при ручном формовании.

В сравнении с ручным формованием рассматриваемый метод обладает следующими преимуществами:

• отпадает необходимость в разрезании и укладке армирующих материалов (стеклоткань, стеклоровинг);

• можно перерабатывать большое количество полимерных композиций;

• упрощается изготовление слоистых пластиков и облицовок (процесс изготовления, как правило, более экономичен);

• упрощается формование слоистых пластиков на поверхностях, расположенных вертикально и вверху, точнее говоря, подобное формование может быть осуществлено только таким способом.

При контактном формовании напылением качество слоистых пластиков в еще большей степени зависит от квалификации специалиста. Предпосылкой к внедрению этого метода должно быть владение технологией ручного формования.

При контактном формовании напылением естественным образом испаряется большое количество стирола. Выполнение инструкций по защите окружающей среды требует принятия особых мер по отводу этого вещества, в особенности в закрытых помещениях. Для решения упомянутых проблем была разработана технология веерного струйного напыления. Вместо «распыляющейся струи» из головки выходит реактивная струя, состоящая из веерообразно расходящихся отдельных струй. На производстве, работающем по такой технологии, испарения стирола могут быть снижены до 1/6 норматива.

Лит.: «Переработка пластмасс» ред. А.Д. Паниматченко, изд. Профессия, Спб 2005

1821 всего просмотров, 0 просмотров за сегодня

Формование вакуумное с эластичной диафрагмой

| Ф | 16.10.2008

Формование вакуумное с эластичной диафрагмой — это метод работы с использованием монолитных пресс-форм, при переработке армированных полимеров.

В обработанную антиадгезионным слоем пресс-форму закладываются армирующий наполнитель, и заливается смола. Накладываемая сверху эластичная диафрагма герметично натягивается, образуя вакуум. Смола распределяется, а многослойный материал уплотняется. Эластичная диафрагма может прижиматься и в результате избыточного давления — достаточно жестко закрыть пресс-форму над диафрагмой. Давление создается между эластичной диафрагмой и верхним кожухом. При работе с повышенным давлением естественно возможно проявление больших усилий, чем при вакуумном формовании. Иногда оба этих метода сочетаются друг с другом.

Лит.: «Переработка пластмасс» ред. А.Д. Паниматченко, изд. Профессия, Спб 2005

1630 всего просмотров, 0 просмотров за сегодня

Химическая стойкость

| Х | 16.10.2008

Химическая стойкость — это одно из свойств стойкости полимера, характеризующее стойкость полимера к агрессивным средам, тоесть приобретать разные ускорения при одинаковых внешних воздействиях со стороны агрессивныз сред.

Перечень агрессивных агентов, влияющих на свойства полимерных материалов, чрезвычайно широк, но тем не менее может быть систематизирован в наиболее часто встречающиеся группы. Это минеральные и органические кислоты, а также растворы последних в воде, растворы щелочей и окислителей, алифатические и ароматические растворители, горюче-смазочные материалы.

Воздействие агрессивной среды на полимер может сопровождаться его набуханием, диффузией среды в полимер и химическим взаимодействием, приводящим к деструкции пластика.

На определение стойкости полимерного материала к агрессивным средам существуют государственные стандарты, характеризующие сопротивляемость в баллах. Чем значимее балл — тем выше сопротивляемость материала воздействию агрессивной среды.

По ГОСТу 12020 стойкость к агрессивным средам оценивается по изменению их массы, причем по пятибалльной шкале: 5 — высокая стойкость; 4 — удовлетворительная; 3 — материал устойчив не во всех случаях; 2 — стойкость недостаточна, к применению не рекомендуется; 1 — материал не стоек и быстро разрушается.

Высокой химической инертностью и стойкостью к деструкции обладают фторопласты. Марки фторопластов Ф-4, Ф-4 НТД, Ф-3, Ф-40 стойки ко всем средам; значительную химстойкость демонстрируют и такие поли-олефины, как ПЭНП, ПЭВП и ПП, а также непластифицированный ПВХ. Несколько уступает им по этому качеству ПК и полистирольные пластики (ПС). Гетероцепные полимеры типа полиамидов склонны к гидролитической деструкции и активному набуханию вследствие своей гидрофильности. Нестоек к агрессивным средам конструкционный термопласт — полиформальдегид.

Термореактивные пластики чувствительны к щелочным средам и растворам окислителей. Вместе с тем в химическом аппаратостроении широко используются высоконаполненные порошковым графитом (асбестом) антегмиты и фаолиты, полученные на основе фенолоформальдегидного или фенолоальдегидного связующего.

Армированные полимерные материалы могут эксплуатироваться длительное время в кислотах и растворах щелочей концентрацией до 10%, а также в растворителях и горючесмазочных материалах.

Лит.: «Производство изделий из полимерных материалов» ред. В.К. Крыжановского, изд. Профессия, Спб 2004

2459 всего просмотров, 0 просмотров за сегодня

Химическая инертность

| Х | 16.10.2008

Химическая инертность — это одно из свойств инертности полимера, характеризующее инетрнтость полимера к агрессивным средам, тоесть приобретать разные ускорения при одинаковых внешних воздействиях со стороны сред.

Для каждого вида полимера существует своя химическая инертность.

Высокой химической инертностью и стойкостью к деструкции обладают фторопласты. Марки фторопластов Ф-4, Ф-4 НТД, Ф-3, Ф-40 стойки ко всем средам, приведенным в таблице 3.13; значительную химстойкость демонстрируют и такие поли-олефины, как ПЭНП, ПЭВП и ПП, а также непластифицированный ПВХ. Несколько уступает им по этому качеству ПК и полистирольные пластики (ПС). Гетероцепные полимеры типа полиамидов склонны к гидролитической деструкции и активному набуханию вследствие своей гидрофильности. Нестоек к агрессивным средам конструкционный термопласт — полиформальдегид.

Лит.: «Производство изделий из полимерных материалов» ред. В.К. Крыжановского, изд. Профессия, Спб 2004

2184 всего просмотров, 0 просмотров за сегодня

Формование изгибом

| Ф | 16.10.2008

Формование изгибом — это процесс формования, в основном в виде гибки листов, который применяется, в производстве химических приборов, а также оборудования для вентиляции и кондиционирования воздуха.

Принцип этого метода заключается в том, что радиусы изгиба должны быть по меньшей мере в 2 раза больше толщины пластины, а зоны нагрева в 5 раз больше нее.

Термоформование применяется также для гибки труб, полученных экструзией. При этом труба заполняется сухим песком или в нее вводится находящийся иод давлением шланг. Затем труба на участке изгиба нагревается до температуры деформирования. Радиусы изгиба должны быть не меньше четырехкратного диаметра трубы.

Лит.: «Переработка пластмасс» ред. А.Д. Паниматченко, изд. Профессия, Спб 2005

1602 всего просмотров, 0 просмотров за сегодня

Формование контактное

| Ф | 16.10.2008

Формование контактное — это форомование, которое применяется для изготовления крупногабаритных малонагруженных деталей сложной конфигурации: коробчатых кожухов механизмов, баков, корпусов и других элементов лодок, катеров и пр.

Контактное формование изделий в открытых формах осуществляют в основном двумя методами — ручной укладкой и напылением. Технология ручной укладки включает следующие основные операции:

— нанесение разделительных покрытий на формы;

— раскрой тканых или нетканых армирующих материалов;

— приготовление связующего;

— укладка армирующего материала на форму;

— нанесение на армирующий материал связующего и пропитка им арматуры;

— отверждение связующего при комнатной температуре или при нагревании до 70-95 °С;

— извлечение изделия из формы и его механическая обработка согласно требованиям чертежа;

— контроль качества изделия.

Метод формования напылением отличается от описанного тем, что волокнистая арматура (стекловолокно, базальтовое волокно, углеволокно) в виде бесконечного ровинга рубится на короткие отрезки — штапельки — и доставляется в форму одновременно со смесью соответствующей смолы и катализатора. Варьирование соотношения смолы и наполнителя, вида армирующего материала и системы его укладки, типа смолы и ее наполнителей позволяет в широких пределах изменять свойства получаемых композиционных пластиков, поскольку структура и свойства композита, да и само изделие формообразуется в процессе его получения.

При конструировании деталей необходимо располагать данными о напряжениях, которые они будут испытывать в процессе хранения и эксплуатации, что позволяет определить необходимые прочностные характеристики применяемого материала.

Лит.: «Производство изделий из полимерных материалов» ред. В.К. Крыжановского, изд. Профессия, Спб 2004

1590 всего просмотров, 0 просмотров за сегодня

Страница 18 из 219 1 16 17 18 19 20 219

ТОП: «Объявление дня»

  • No ads viewed yet.