About admin

  • На сайте с: 21.11.2015

Текст объявления

Ads / Latest items listed

Sorry, no listings were found.

Posts / Recent blog posts
Комментарии к записи Эпоксидные армированные пластики отключены

Эпоксидные армированные пластики

| Эпоксидные полимеры | 17.11.2008

Армированные пластики, представляющие собой сочетание непрерывной полимерной матрицы (со сравнительно малыми значениями модуля упругости и прочности) с прочными высокомолекулярными волокнами, появились сравнительно недавно, но уже сейчас играют значительную роль во многих отраслях техники.

Читать далее »

10739 всего просмотров, 0 просмотров за сегодня

Комментарии к записи Формование волокон из расплавов полимеров отключены

Формование волокон из расплавов полимеров

| ИНФОРМАЦИЯ ПО ТЕМЕ | 17.11.2008

В основе процесса формования волокна лежат различные физические явления: течение расплава, вытягивание струи, фазовые переходы (затвердевание плава, в ряде случаев кристаллизация полимеров), движение затвердевшего волокна, интенсивный теплообмен с окружающей средой. Формование волокна представляет собой очень сложный и теоретически недостаточно изученный процесс. Количественную оценку физических процессов, сопутствующих формованию, провести в настоящее время невозможно. Это объясняется сложностью протекающих явлений, большими скоростями формования (500-800 м/мин), а также отсутствием надежных методов характеристики свойств быстродвижущейся струи в продольном направлении и при изменяющейся температуре.
Знание законов течения расплавов является одной из предпосылок создания теории формования волокна из вязко-текучего состояния полимеров. Результаты исследований последних лет дают возможность качественно оценить основные стадии процесса формования волокна.
Процесс формования волокна можно разбить на четыре основные стадии: течение расплава полимера с постоянной скоростью в каналах фильеры; расширение струи после выхода из канала фильеры; вытягивание струи расплава и образование твердой фазы; движение образовавшегося твердого волокна, обработка полученной нити и прием ее на соответствующие приспособления.

ТЕЧЕНИЕ РАСПЛАВОВ В КАНАЛАХ ОТВЕРСТИИ ФИЛЬЕРЫ

Движение расплавов в каналах фильеры по характеру аналогично движению расплавов в капиллярах вискозиметров, применяемых для изучения свойств расплавов полимеров. Малая длина капилляра и отклонение от ньютоновского течения оказывают существенное влияние на свойства расплава.
На режим течения существенное влияние оказывают входовые эффекты. Как уже отмечалось выше, расплавы полимеров обладают вязко-эластическими свойствами. При входе в канал в расплаве возникают упруго-эластические деформации. Продолжительность нахождения расплава в капилляре составляет 10~4-10~2 сек, а продолжительность релаксации значительно больше (0,1-5 сек), поэтому в процессе течения не успевают реализоваться возникшие при входе упруго-эластические напряжения. Эти напряжения оказывают влияние на некоторые процессы, протекающие при течении расплава по каналам фильер и после выхода расплава из фильеры. К ним относятся расширение (вспучивание) струи и «дробление» или нарушение равномерности расплава, приводящее к получению волокна с неравномерной поверхностью или спиралевидной формы. Интенсивность проявления этих процессов зависит от свойств расплавов, определяемых природой полимера и, в частности, упругой составляющей деформации и параметров процесса течения.
Дробление или «огрубление» поверхности наблюдается при многих технологических процессах: формовании волокон, литье пленок и других технологических процессах экструзии полимеров. Причины и место возникновения дробления расплава в литературе описаны недостаточно; приводимые данные противоречивы. Однако довольно подробно изучено влияние отдельных факторов на дробление расплава, приводящее к получению изделий плохого качества, и установлены некоторые закономерности.
Многие исследователи дробление расплава связывают с величиной напряжения сдвига. При определенной величине напряжения сдвига на кривой течения появляется перегиб. Точка перегиба соответствует критическому значению напряжения сдвига, выше которого начинается неустойчивое течение и дробление расплавов. Повышение температуры приводит к перемещению точки перегиба в сторону больших значений напряжений сдвига. Величина критического напряжения и соответствующая ему критическая скорость сдвига определяют оптимальные условия переработки полимера, качество готовых изделий и производительность оборудования. По Шулькену и Бойя, дробление расплава наступает, когда напряжение сдвига превышает сдвиговую прочность расплава.
При входе расплава в капилляр происходит резкое увеличение градиента скорости, требующего значительного увеличения напряжения сдвига для снижения вязкости расплава. Снижение начальной высокой вязкости до значений, соответствующих достигнутому градиенту скорости, также протекает во времени. Если напряжение сдвига превышает прочность расплава, происходит его разрушение (это наблюдается при резком возрастании градиента скорости), нарушение целостности экструдата нельзя определять по перегибу на кривой течения, так как иногда на кривой течения перегиб не наблюдается, а дробление расплава происходит; особенно заметно это несоответствие при использовании коротких капилляров, например при формовании волокна. Явление дробления расплава наблюдается при достижении определенной скорости сдвига, названной критической скоростью сдвига. По мнению авторов работы, на дробление расплава более существенно влияет не сама скорость сдвига, а скорость ее изменения. Особенно большое значение приобретает в связи со стремлением значительно увеличить скорость переработки термопластичных материалов.
На величину укр. особенно заметное влияние оказывает геометрическая форма входного отверстия в капилляр. Установлено, что при течении расплава по капилляру на входе образуется естественный конус с углом 30-40°. Остальное пространство представляет собой мертвую зону, в которой расплав может только циркулировать. Поэтому, если цилиндрическую форму входного отверстия изменить на коническую, ликвидируется мертвое пространство перед входом и создается более равномерное поле сил. На оптимальный угол входа влияет много факторов, поэтому имеющиеся в литературе данные противоречивы. Для длинных капилляров изменение угла входа в пределах 40-180° мало сказывается на укр. По данным, уменьшение угла входа приводит к увеличению укр. При конической форме входного отверстия и углах входа 20 и 24° значение уКр. увеличивается в 10-14 раз по сравнению с цилиндрической формой отверстия. Изменение угла входа в пределах от 40 до 180° оказывает небольшое влияние на укр., и только при угле входа меньше 20° наблюдается повышение укр. По Милсу42, конусообразная форма входного отверстия с углом в 40° способствует уменьшению шероховатости поверхности литьевых изделий. Влияние входных эффектов на значение уКр. наглядно показано в работе56 с так называемым «бесконечным капилляром», в котором отсутствуют входовые эффекты. Для моделирования бесконечного капилляра в капилляр с L/do = 54,8 заливался и длительное время выдерживался расплав полимера, при этом происходила релаксация напряжения. Выдавливание расплава из капилляра при у=135 приводит к получению гладкого экструдата. Если при той же величине у выдавливание осуществлять обычным методом, получается спиралевидный экструдат.
Геометрическая форма входного отверстия имеет особенно важное значение для коротких капилляров, к которым относятся фильеры. Формование волокон из расплавов обычно . проводится на фильерах с коническим входным отверстием, обеспечивающим возможность применения более высоких градиентов скоростей. В одном из патентов58 формование полипропиленового волокна при высоких напряжениях сдвига рекомендуется проводить на фильерах с конусом, имеющим угол не менее 14°, высоту конуса 0,75 — 2,5 см и высоту цилиндрической части более и менее 40% от суммарной высоты конической и цилиндрической частей фильеры. Такая форма фильеры дает возможность значительно увеличить напряжение сдвига без нарушения равномерности течения расплава. Так, например, при т = 2,7 • 106 дин/см2 и подаче расплава со скоростью 1,7 г/мин формование полипропиленового волокна на фильерах, имеющих высоту конической части 1,25 см, конусность 14°, длину цилиндрической части 0,31 см и диаметр отверстия 0,05 см, протекает устойчиво. При удлинении канала или уменьшении диаметра нарушение процесса формования происходит при более низких скоростях подачи или напряжениях сдвига.

Капилляры более сложного профиля с изменяющимся по длине углом дают возможность значительно увеличить скорость экструзии, но изготовление таких капилляров связано с большими трудностями. Профиль сечения отверстий фильеры следует подбирать с учетом свойств расплава полимера, и для каждого полимера должна быть своя оптимальная форма канала.
На дробление заметное влияние оказывает температура расплава полимера. В ряде работ однозначно показано влияние температуры. При увеличении температуры заметно возрастает критическая скорость сдвига. тДанные о влиянии температуры на критическое напряжение сдвига также противоречивы. Некоторые исследователи61 считают, что тКр. полиэтилена уменьшается при повышении температуры, другие указывают на увеличение тКр. и, наконец, третьи считают, что температура оказывает незначительное влияние на критическое напряжение сдвигар. Малая чувствительность тКр. к температуре вытекает из свойств расплавов. Значение tKp. определяется начальным модулем, который мало зависит от температур.
До настоящего времени не установлены причины, вызывающие дробление расплавов. По Е. Е. Глухову и С. И. Клаз, причиной дробления расплава является пристенное скольжение полимера. Такое же мнение высказывается в работе. Многие авторы наблюдали пульсацию потока расплава при скоростях сдвига выше критической.Большинство исследователей явление дробления связывают с эластическими свойствами расплава. Нарушение потока расплава возникает при обратимых деформациях сдвига, равных примерно 700%. Характерно, что величина обратимого сдвига остается примерно одинаковой для большинства полимеров.
А. Я. Малкин и А. И. Леонов60 в качестве критерия перехода течения расплава на неустановившийся режим ввели названный ими эластический критерий Рейнольдса ReKp., представляющий собой отношение сил вязкости к силам упругости. При некотором значении ReKp силы упругости становятся равными силам вязкости; при этом упругие колебания не смогут гаситься за, счет внутреннего трения.
Константа ReKP. является универсальной величиной, так как она не зависит от температуры, геометрической формы капилляра, материала и других факторов. Для определения ReKp. необходимо знать продолжительность релаксации и параметры потока. Баглей предложил метод прямого определения ReI;p. из данных капиллярной вискозиметрии. По входовым эффектам определяются нормальные напряжения, а касательные напряжения находятся непосредственно из условий эксперимента.
Обязательным условием применимости этого уравнения является соблюдение закона Гука для высокоэластической сдвиговой деформации. Нарушение потока различные исследователи объясняют по-разному. Сторонники пристенного скольжения считают, что эти явления возникают внутри капилляра. Другие исследователи допускают, что нарушения возникают внутри потока при входе расплава в капилляр, а затем проявляются на поверхности.

РАСШИРЕНИЕ ПОТОКА РАСПЛАВА ПОСЛЕ ВЫХОДА ИЗ КАНАЛА ФИЛЬЕРЫ

Расширение потока после выхода его из канала фильеры наблюдается при формовании волокна из растворов и расплавов полимеров и экструзии термопластов.
Факторы, определяющие степень расширения струи. Скорость (или градиент скорости) потока в канале фильеры. При увеличении скорости потока и сохранении прочих равных условий возрастает максимальное расширение струи.
Бейнон и Глайд также наблюдали расширение струи при экструзии полиэтилена с увеличением градиента скорости, особенно в области малых градиентов скоростей. По их данным, степень расширения струи в зависимости от градиента скорости проходит через максимум, причем максимум расширения соответствует началу разрушения расплава.
Метцнер и сотр. определяли расширение струи полиэтилена высокого давления и полипропилена. Отмечено постепенное увеличение расширения с возрастанием градиента скорости, при этом максимума на кривой не обнаружено (рис. 50). Увеличение угла наклона кривой для полипропилена авторы объясняют большим по сравнению с другими полимерами проявлением эластичности при течении полипропилена. Кривая для полиэтилена высокого давления не характерна, так как она относится к полимеру с низким молекулярным весом. Полиэтилен высокого давления обладает меньшей текучестью, чем полипропилен, и для него эффект расширения должен быть выражен более заметно.
Давление или напряжение сдвига в канале. Расширение струи возрастает с увеличением напряжения сдвига, причем наиболее заметно влияние напряжения сдвига сказывается в области низких значений напряжений сдвига. Степень расширения струи при возрастании напряжения сдвига проходит через максимум. Начало разрушения расплава и искажение экструдата соответствуют появлению максимума на кривых течения.
Длина канала или продолжительность пребывания расплава в канале. По данным Забицкого, с увеличением длины канала или, что то же самое, продолжительности пребывания расплава в канале максимальное расширение струи уменьшается. Однако Клегом было показано, что при низких скоростях потока расширение не зависит от длины мундштука, и только большие скорости сдвига вызывают эффект, наблюдаемый Забицким и другими авторами. Кастой установлена линейная зависимость lg(Qmax-Qmin) = =f(t) для медноаммиачных растворов, что указывает на релаксационный механизм этого явления. Для расплавов подобная закономерность не соблюдается.

Температура расплавов

Температура оказывает большое влияние на расширение струи. С понижением температуры происходит резкое увеличение диаметра струи в зоне расширения. При высоких температурах формования такое явление не наблюдается. Влияние температуры связано с изменением вязкости и релаксационных свойств расплава. Увеличение вязкости расплава вызывает увеличение Q. Поэтому все факторы, определяющие вязкость расплава, влияют на расширение струи.
С повышением молекулярного веса полимера этот эффект проявляется в большей степени.
Диаметр отверстий фильер. По данным Н. В. Михайлова, зона расширения зависит от диаметра отверстия фильеры. При малых диаметрах отверстий фильеры (0,25-0,50 мм) максимальный диаметр струи достигает двукратной величины по сравнению с диаметром отверстий фильеры.

Для фильеры с большим диаметром (1,0-1,5 мм) расширение гораздо меньше, но все же диаметр струи в 1,2 раза больше диаметра отверстия фильеры.
Расширение струи при формовании относится к нежелательным явлениям. В случае расширения создается неустойчивый поток расплава и может нарушаться стабильность процесса формования. При максимальном расширении возможно растекание расплава, приводящее к появлению наплывов, получению волокна искаженной формы или, наконец, к обрыву формующегося волокна. Поэтому необходимо, чтобы при формовании расширение струи было минимальным.
Важнейшими причинами расширения струи могут быть:
а) перестройка потока скоростей (превращение параболического потока в плоский) при выходе из фильеры;
б) дезориентация макромолекул или движущихся частиц на выходе из канала фильеры;
в) релаксация напряжений, возникающих при входе в капилляр и не успевших реализоваться при течении расплава по каналу фильеры;
г) возникновение нормальных напряжений (эффект Вейссенберга) вследствие проявления присущих расплавам вязко-эластических свойств;
д) поверхностные явления, связанные с адгезией расплава к материалу фильеры.
При формовании волокон из расплава полимеров на расширение струи, видимо, большое влияние оказывают релаксационные процессы и возникающие нормальные напряжения. Этот вывод в известной мере подтверждается тем, что такие факторы, как повышение температуры, удлинение канала, уменьшение вязкости, благоприятствуют завершению процессов релаксации в канале фильеры и способствуют уменьшению расширения струи.
Формование волокна из расплавов полимеров производится на фильерах с диаметром отверстий 0,25-0,6 мм. После выхода из фильеры струя расплава дополнительно расширяется в 1,2-2 раза и ее диаметр увеличивается до 0,5-0,7 мм.
В процессе формования при переходе от расплавленной струи к волокну происходит уменьшение диаметра в среднем в 10-12 раз, а с учетом расширения в 14-17 раз. Вытягивание струи расплава в процессе формования волокна называется фильерной вытяжкой. Вытягивание осуществляется на третьей стадии формования после выравнивания профиля скоростей до затвердевания расплава в форме волокна. Вытягивание является наиболее ответственной стадией формования волокна. Волокнообразующие свойства полимера при формовании волокна из расплава определяются главным образом его способностью к вытягиванию. Получить волокно заданного номера (порядка 1000-6000) можно только в том случае, если расплавленная струя способна к большим фильерным вытяжкам, лежащим в пределах 1500-3000%. Увеличить номер волокна можно, применяя для формования волокна фильеры с меньшим диаметром отверстий.
При выходе расплава из канала фильеры происходит перераспределение профиля скоростей; исчезает трение о стенки канала и начинается выравнивание профиля скоростей — он приобретает плоскую форму. Одновременно изменяется характер градиента скорости. Вытягивание формующегося волокна происходит в продольном поле сил при одноосном растяжении струи расплава. В этом случае реализуется продольный градиент скоростей (D) в отличие от поперечного градиента скоростей в расплаве, текущем в капиллярах фильеры. Скорость движения расплава по длине канала остается постоянной, поэтому продольный градиент скорости в канале равен нулю.
Теория процесса формования волокна, особенно на стадии ьытягивания, может быть создана только в результате всестороннего изучения свойств расплавов полимеров в поле продольного градиента скоростей. Однако исследований в этом направлении проведено очень мало. Огромное число работ по реологии расплавов проводилось только в поле с поперечным градиентом скоростей (сдвиг) и найденные при этом закономерности течения лишь частично могут быть использованы для понимания процесса формования волокна.
При формовании волокна из расплава происходит переход от движения жидкой струи к движению затвердевшего волокна. Расплавы полимеров представляют собой систему, состоящую из надмолекулярных образований (агрегаты, пачки) и макромолекул или отрезков макромолекул, не входящих в состав пачек. Свойства расплавов (растворов) определяются размерами, продолжительностью «жизни» и прочностью связей макромолекул в пачке, а также гибкостью цепных макромолекул. Изменение конформации макромолекул и размеров агрегатов под влиянием напряжений обусловливает двойственную природу расплава полимеров. В результате разрушения пачек происходит уменьшение вязкости, а выпрямление макромолекул и обеднение конформационного набора вызывают увеличение вязкости системы. В зависимости от величины приложенного напряжения преимущественно может протекать тот или иной процесс, и, как следствие этого, вязкость расплавов может изменяться по-разному.
При малых внешних усилиях, возникающих в материале, напряжения не могут разрушить надмолекулярную структуру но они вполне достаточны для того, чтобы вызвать распрямление макромолекул. Поэтому в указанных условиях процесс деформации сопровождается уменьшением конформационного набора, увеличением жесткости макромолекул и вязкости расплава. Такую картину в продольном градиенте скоростей наблюдали Нитчман и Шраде, а также В. А. Каргин и Т. И. Соголова.

При больших напряжениях или градиентах скоростей главным фактором, определяющим реологические свойства расплавов, является разрушение структуры, а не изменение конформации макромолекул. Под влиянием больших напряжений происходит разрушение и постепенное уменьшение размеров агрегатов, сопровождающееся уменьшением вязкости. Пачки непрерывно распадаются и вновь возникают, образуя сетчатую структуру расплава полимера. Однако под влиянием приложенного напряжения активные центры, образующие углы связи в пачках, удаляются на большее расстояние, поэтому замедляется их восстановление и, как следствие этого, происходит снижение вязкости. В вискозиметрии чаще всего применяются относительно высокие напряжения сдвига, соответствующие второй ветви полной реологической кривой, поэтому процесс течения в этом случае сопровождается уменьшением вязкости (аномальная вязкость).
Влияние величины напряжения сдвига на характер изменения скорости деформации во времени при различных напряжениях сдвига наглядно показано в работе Г. М. Бартенева и Л. А. Вишницкой. При малом напряжении сдвига скорость деформации полиизобутилена уменьшается (вязкость увеличивается), а при большом, наоборот, скорость деформации возрастает (вязкость уменьшается).
На структуру расплавов (растворов) полимеров существенное влияние, оказывает температура. С повышением температуры вследствие увеличения кинетической энергии макромолекул уменьшается межмолекулярное взаимодействие, поэтому происходит распад пачек и наблюдается снижение вязкости расплавов. Одновременное воздействие повышенной температуры и напряжения вызывает более интенсивное снижение вязкости системы.

Факторы, влияющие на устойчивость процесса формования

Самоупрочнение расплавленной струи во время вытягивания. Диаметр струи в зоне вытягивания непрерывно уменьшается и при постоянном усилии, создаваемом приемным механизмом, напряжение в струе возрастает. Предотвратить разрыв струи можно только путем ее непрерывного упрочнения. Эффект упрочнения достигается в результате увеличения трутоновской вязкости.
Течение расплавов в каналах фильеры в поле поперечного градиента скоростей происходит при больших напряжениях сдвига и высоких температурах. В этих условиях течение сопровождается или разрушением пачек и аномалией (снижением) вязкости, или вязкость остается неизменной (максимальная ньютоновская вязкость, если расплав выводится на режим ньютоновского течения). В зоне вытягивания (поле продольного градиента скоростей) реализуются небольшие напряжения, которые могут вызвать только изменение конформации макромолекул, поэтому на этой стадии процесс формования сопровождается увеличением вязкости струи (формующегося волокна). В процессе формования вязкость резко возрастает также вследствие снижения температуры. По мнению Забицкого65, решающее влияние на увеличение вязкости в этих условиях оказывает снижение температуры струи. Однако увеличение трутоновской вязкости в поле продольного градиента скоростей вследствие выпрямления макромолекул наблюдается также при деформации полимеров в изотермических условиях.
Вероятно, оба фактора оказывают влияние на изменение трутоновской вязкости, но раздельное изучение этих процессов применительно к формованию по методическим причинам осуществить чрезвычайно трудно. В связи с этим возникает настоятельная необходимость разработки методов определения температуры формующегося волокна.
Различие в поведении расплавов полимеров в поле поперечного и продольного градиентов скоростей проявляется не только в характере изменения вязкости, но в движении и ориентации макрочастиц, эластической деформации и временах релаксации, распределении и рассеянии энергии.

Величина вязкости и характер течения расплава

Для волокнообразующих полимеров важной характеристикой является их прядомость. Одним из критериев прядомости может служить величина фильерной вытяжки, определяющая возможность получения тонкой филаментной нити. Как было показано в работе Т. В. Дружининой, А. А. Конкина и Г. В. Виноградова10, на величину фильерной вытяжки существенно влияет вязкость расплава. При (гт] = 1,6) высокой вязкости расплава (5 000-30 000 пз) величина фильерной вытяжки не превышает 200% и даже при таких малых фильерных вытяжках формование протекает неустойчиво, с частыми обрывами волокон. При вязкости расплава около 2000 пз значительно улучшается устойчивость формования и увеличивается фильерная вытяжка до величины, позволяющей, с учетом последующего вытягивания, получить нить высокого номера. Высокой прядомостью обладают расплавы полиэтилена, течение которых приближается по свойствам к ньютоновской жидкости. Аналогичная закономерность наблюдалась для сополимеров этилена и пропилена. В связи с этим известный интерес представляет сопоставление режимов течения и прядомости других волокнообразующих полимеров. Были сняты кривые течения и определены вязкости расплавов полипропилена и поликапроамида при температурах, близких к температурам, применяемым при формовании волокна из этих полимеров. Кривые течения расплавов поликапроамида подчиняются закону Ньютона, а расплавов полипропилена приближаются к кривым течения ньютоновской жидкости. Соответственно для расплавов поликапроамида аномалия вязкости не наблюдается, а для расплава полипропилена она выражена слабо. Определение вязкости расплава поликапроамида на приборе АКВ-5 в широком интервале изменения напряжений сдвигов и температур, близких к условиям формования, на капиллярах разной длины, в том числе на фильерах, показало также, что расплав поликапроамида ведет себя, как ньютоновская жидкость. Таким образом, на примере ряда полимеров показано, что устойчивое формование возможно только при определенных оптимальных значениях вязкости, соответствующих выходу расплава на режим ньютоновского течения. По Муроу и Эмура, формование волокна из пластифицированного поливинилхлорида протекает устойчивее в системах, в которых меньше проявляется структурная вязкость.
Для каждого полимера существует свое оптимальное значение вязкости. На основании практических данных формование волокон основных типов производится из расплавов полимеров с вязкостью от 800 до 3000 пз. Любопытно отметить, что формование поликарбонатного волокна протекает довольно устойчиво при значительно больших вязкостях расплава (10 000-12 000 пз) и с высокими фильерными вытяжками (до 3000%). Но в этом случае, несмотря на относительно большую вязкость, течение расплавов поликарбонатов при температуре формования (300-310 °С) подчиняется закону Ньютона.
Причины влияния режима течения на прядомость расплавов полимеров пока неясны. Видимо, аномалия вязкости ; отрицательно сказывается на устойчивости формования в зоне расширения струи, вытекающей из фильеры. Наличие аномальной вязкости, согласно Баглея, связано с проявлением упруго-эластических свойств расплавов полимеров. Вероятно, существует критическое значение упруго-эластической составляющей деформации течения, выше которого формование волокна становится невозможным.
Переход режима течения расплава на ньютоновский может быть достигнут при повышении температуры или снижении молекулярного веса полимера. Пределы повышения температуры ограничиваются термостабильностью полимеров. Снижение молекулярного веса ниже определенного предела нежелательно, так как это отрицательно сказывается на свойствах готового волокна. Большой интерес представляет изучение процесса формования волокна при значительном увеличении перепада давления на фильерах различного диаметра и капиллярах разной длины.

12907 всего просмотров, 0 просмотров за сегодня

Комментарии к записи Физикохимия наполненных эпоксидных композиций отключены

Физикохимия наполненных эпоксидных композиций

| Эпоксидные полимеры | 17.11.2008

Механизм межфазного взаимодействия в системах полимер — наполнитель весьма сложен и полностью не выяснен, хотя в последнее время эту проблему интенсивно исследуют на примере линейных кристаллических и в меньшей мере аморфных полимеров.

Читать далее »

7585 всего просмотров, 0 просмотров за сегодня

Комментарии к записи Свойства и области применения полиолефиновых волокон отключены

Свойства и области применения полиолефиновых волокон

| ИНФОРМАЦИЯ ПО ТЕМЕ | 17.11.2008

Свойства волокон определяются главным образом химической природой и физической структурой полимера, а также макроструктурой волокна.
Первичными элементами структуры полимера являются макромолекулы с различным молекулярным весом (или степенью полимеризации — СП).
На примере многих волокнообразующих полимеров было показано, что с увеличением молекулярного веса полимера улучшаются механические свойства волокна. Для каждого типа полимера существует минимальное значение СП, ниже которого начинается резкое ухудшение механических свойств волокна; о верхнем пределе значения СП имеются разноречивые мнения. По данным ранних работ, при достижении определенного значения СП, характерного для каждого полимера, дальнейшее его увеличение мало сказывается на прочности волокна. В последние годы ряд исследователей высказывают мнение, что механические свойства волокна непрерывно улучшаются с увеличением СП полимера. Известно, что с увеличением СП повышается вязкость растворов и расплавов полимеров и затрудняется их переработка в волокно, особенно на стадии формования. Поэтому для переработки в волокна целесообразно использовать полимеры с СП от 350 до 2000.
Обычно для гетероцепных полимеров оптимальное значение СП ниже, чем для карбоцепных полимеров.
Полимеры характеризуются молекулярной полидисперсностью, роль и значение которой изучены недостаточно. Наиболее полные исследования проведены с целлюлозой. Во многих работах показано, что наличие низкомолекулярных фракций отрицательно сказывается на механических и особенно усталостных показателях вискозного волокна. Особенно четко эта закономерность проявляется при производстве высокопрочного корда. Влияние молекулярной полидисперсности на механические свойства полиолефиновых волокон почти не исследовалось. Отчасти это объясняется трудностями фракционирования полиолефинов. В работе1 отмечается, что из полипропилена с узким молекулярным распределением получаются волокна с несколько лучшими механическими свойствами.
Большую роль играет также строение макромолекул. Нарушение регулярности расположения элементарных звеньев или заместителей в макромолекуле затрудняет образование надмолекулярных структур (кристаллизацию), которые оказывают непосредственное влияние на свойства волокна. Влияние этого фактора особенно наглядно показано на примере стереорегулярного полипропилена и линейного полиэтилена.
На первом этапе изучения взаимосвязи между структурой и свойствами волокна большое значение придавалось ориентации макромолекул вдоль оси волокна. По мере увеличения ориентации повышается однородность материала, уменьшается расстояние между макромолекулами и возрастает межмолекулярное взаимодействие. Однако исследования последних лет показали, что исходя только из этих представлений нельзя объяснить многообразие физико-механических свойств полимерных материалов.
Наряду с молекулярными структурами к одному из решающих факторов, определяющих свойства полимеров и волокон, относятся надмолекулярные структурные образования. На основании современных представлений, в реальных кристаллических и аморфных полимерах содержатся надмолекулярные образования. Полимеры, как правило, представляют собой структурно неоднородные системы, состоящие из областей с упорядоченным и беспорядочным расположением макромолекул. Надмолекулярные структурные образования обычно подразделяются на первичные и вторичные элементы структуры. Первичные структурные элементы образуются в результате строго закономерного расположения макромолекул относительно друг друга. Для кристаллических полимеров к подобным элементам структуры относятся кристаллы, а для аморфных полимеров-макрофибриллы или пачки самых разнообразных форм и размеров. Размеры первичных структурных элементов составляют около 100А. Эти структурные образования по размеру меньше макромолекул2, длина которых для обычных волокнообразующих полимеров составляет до 1000А. Вторичные структурные элементы образуются из первичных структур. К ним относятся сферолиты и макрофибриллы. В кристаллических полимерах имеются кристаллические и аморфные области. В аморфных полимерах надмолекулярные образования не содержат кристаллических образований, но тем не менее по степени упорядоченности макромолекул они являются структурно неоднородными.
Вторичные структурные элементы (сферолиты, макрофибриллы) по размерам значительно превосходят первичные и могут достигать величины нескольких миллиметров. Макрофибриллы имеют обычно асимметричную форму — большую длину и относительно небольшую толщину. Сферолиты, как это следует из названия, приближаются к сферической форме. Сферолиты образуются при медленном охлаждении расплавов полимеров. Для волокон, как правило, характерна фибриллярная структура. К сожалению, строение первичных и вторичных структурных образований мало изучено. В ряде обзорных статей рассматривается структура полимера и делаются попытки увязать структуру с механическими свойствами полимеров2. Большинство исследователей считают, что механические свойства волокон определяются соотношением между кристаллической (упорядоченной) и аморфной (неупорядоченной) структурами, размерами надмолекулярных образований и ориентацией элементов структуры вдоль оси волокна.
На механические свойства волокна оказывает также большое влияние их макроструктура, которая характеризуется неоднородностью по поперечному срезу волокон, наличием пор и трещин, а также неоднородностью каждого волокна. Изучение макронеоднородности волокон было начато гораздо раньше, чем изучение физической структуры полимера; это объясняется доступностью и простотой применяемых для этих целей микроскопических методов исследования. Многие волокна по поперечному срезу являются структурно неоднородными3 и состоят из оболочки (внешний слой) и сердцевины (внутренний слой), которые отличаются по физическим и механическим свойствам. Такое деление на оболочку и сердцевину только в первом приближении характеризует макронеоднородность волокна. Электрономикро-скопические исследования ультратонких срезов и реплик показало, что волокна имеют сложное строение4 наподобие колец Ле-зиганга.
Макроструктурная неоднородность присуща волокнам, сформованным из растворов и расплавов полимеров, и обусловлена различными условиями массо- и теплообмена внешних и внутренних слоев формующегося волокна, а также неодновременным протеканием химических процессов, если таковые имеют место, по поперечному сечению волокнаОдним из видов неоднородностей является наличие в волокнах пор или макропустот, которых особенно много в вискозных волокнах. В синтетических волокнах, сформованных преимущественно из расплавов, макропор сравнительно мало. При наличии пор уменьшается истинное сечение по сравнению с монолитным волокном; к тому же при приложении внешнего усилия в порах могут возникать более высокие напряжения, приводящие к преждевременному разрушению материала.
Получение строго однородного монолитного волокна не представляется возможным. Реальные волокна отличаются по диаметру, а также наличием в них различных включений и макродефектов. Вследствие неодинаковых условий формования отдельные волокна по прочности могут отличаться в 2-4 раза5. Вот почему для получения волокна с определенными свойствами необходимо процесс формования проводить в стандартных условиях и строго выдерживать параметры формования.
Физико-химические свойства волокон, в том числе термо- и теплостойкость, определяются преимущественно химическим составом полимера. Присутствие в основной цепи гетероатомов, реакционноспособных групп или подвижных атомов снижает химическую стойкость волокна. Наличие гидрофильных групп приводит к повышению гигроскопичности и снижению электроизоляционных характеристик. Увеличение степени кристалличности полимера и ориентации макромолекул вызывает некоторое уменьшение гигроскопичности и повышение химической стойкости.
Характерной особенностью полиолефиновых волокон является их малая по сравнению с другими волокнами плотность (меньше единицы). Сочетание малой плотности и высокой прочности создает условия для изготовления из этих волокон легких и прочных изделий.
Кристалличность полиэтиленового волокна из линейного полимера и полипропиленового волокна составляет 50-70%. Полиэтиленовое волокно из полимера разветвленной структуры характеризуется более низким содержанием кристаллической фракции. С увеличением степени кристалличности несколько возрастает плотность волокна.
К недостаткам полиэтиленового волокна относится низкая температура размягчения и плавления. Полипропиленовое волокно по этому показателю выгодно отличается от полиэтиленового, однако температура его плавления также недостаточно высока.

Для полиолефиновых волокон характерна низкая, близкая к нулю гигроскопичность. Поэтому они практически не теряют прочности в мокром состоянии. Вследствие незначительных диэлектрических потерь полиолефиновые волокна могут служить прекрасными электроизоляционными материалами.
Полиолефиновые волокна довольно стойки к органическим растворителям. При обычной температуре они не растворяются в большинстве органических растворителей и только в некоторых набухают. Степень набухания зависит от природы растворителя, температуры и продолжительности воздействия. При высокой температуре полиолефиновые волокна растворяются в ароматических и алифатических углеводородах и их производных.
Полиолефиновые волокна обладают своеобразными физико-механическими свойствами. В ряде случаев отсутствует корреляция между отдельными взаимосвязанными показателями. Особенности физико-механических свойств полиолефиновых волокон всецело определяются степенью кристалличности полимера и интенсивностью межмолекулярного взаимодействия.
До недавнего времени считали, что из гибкоцепных- полимеров, к которым относятся полиолефины, нельзя получить волокна с удовлетворительными механическими свойствами. Обычно к волокнообразующим относили только такие линейные полимеры, в которых содержатся полярные группы, обусловливающие снижение гибкости макромолекул и обеспечивающие интенсивное межмолекулярное взаимодействие. Исследования в области полиолефиновых волокон показали, что из гибкоцепных полимеров можно получить высокопрочные волокна. Одним из факторов, определяющих свойства этих волокон, является степень кристалличности полимера. Именно вследствие высокой кристалличности полиолефиновые волокна обладают высокой прочностью, небольшими разрывными деформациями и имеют характерные кривые на диаграмме напряжение — деформация. Большие модули эластичности высокомодульного полиэтиленового волокна обусловлены высокой кристалличностью полимера.
Любой гибкоцепной полимер в области температур, лежащих ниже температуры стеклования, становится жестким и теряет присущие ему большие высокоэластические деформации. Примером может служить натуральный каучук, охлажденный до температуры ниже -70 °С. Полиэтилен и полипропилен от типичных каучуков отличаются тем, что температуры кристаллизации их выше 100 °С, поэтому при обычных условиях они являются высококристаллическими полимерами и обладают свойствами, присущими волокнообразующим полимерам. При нарушении регулярности цепи, например в результате хлорирования или хлорсульфирования полиэтилена, снижается степень кристалличности и температура плавления полимера и он уже при обычной температуре становится каучукоподобным. Аналогичные изменения свойств наблюдаются для сополимеров этилена и полипропилена при содержании в них более 15% пропилена. В полиолефинах связи С-С и С-Н мало поляризованы, поэтому межмолекулярное взаимодействие обусловлено ван-дер-ваальсовымн силами, которые невелики. Эти силы вполне достаточны, чтобы создать жесткую кристаллическую структуру полимера при обычной температуре, но они слишком малы, чтобы оказать сопротивление воздействию повышенной температуры и внешним механическим усилиям. Энергия межмолекулярного взаимодействия в полиолефинах составляет всего 1 — 2 ккал/моль. С этим связана склонность полиолефиновых волокон к течению. При обычной температуре под влиянием напряжений, возникающих при приложении внешних усилий, происходит разрыв межмолекулярных связей, вероятно в первую очередь между кристаллитами, и, как следствие этого, холодное течение волокна. По этим же причинам полиэтиленовое волокно обладает низкими эластическими свойствами. Под влиянием напряжения происходит течение полимера, приводящее к накоплению необратимых деформаций.
В связи с лабильной структурой на механические свойства полиолефиновых волокон большое влияние оказывают условия эксперимента, особенно продолжительность испытания волокна. Для полиолефиновых волокон характерно несоответствие одних и тех же величин, полученных на различных приборах .
Для улучшения комплекса физико-механических свойств (особенно теплостойкости и снижения текучести) необходимо повысить межмолекулярное взаимодействие путем образования химических связей.
Механические свойства полиолефиновых волокон зависят от природы полимера, а также в значительной степени от условий переработки полимера в волокно. К важнейшим показателям, характеризующим механические свойства волокон, относятся: прочность, удлинение, начальный модуль, эластические свойства, устойчивость к многократным деформациям, текучесть под нагрузкой, усадка при повышенных температурах и др.

Филаментные полипропиленовые нити по прочности (35-70 ркм) не уступают филаментным нитям из широко распространенных синтетических волокон (полиамидные, полиэфирные). Полиэтиленовые филаментные нити незначительно отличаются от полипропиленовых (35-65 ркм). Филаментные нити из СЭП занимают промежуточное положение между полиэтиленовыми и полипропиленовыми филаментными нитями.
Полипропиленовое волокно, сформованное из раствора полимера, не содержащего стабилизатора, по прочности (50- 65 ркм) почти не отличается от волокна, полученного формованием из расплава полимера7.
Производство полиолефиновых волокон, особенно полипропиленового, начато недавно, и достигнутые результаты по прочности волокон не являются пределом. Фирма «Аи Си Аи» (Англия) получила полипропиленовое волокно улстрон8 с прочностью 76,5 ркм. Высказывается также мнение9 о возможности повышения прочности полипропиленового волокна до 100 ркм.
Для полиэтиленового волокна файбер Т и полипропиленового волокна файбер PTV характерен повышенный, по сравнению с другими волокнами, молекулярный вес полимера, а также узкая кривая распределения по молекулярным весам. Оба эти фактора способствуют повышению прочности и улучшению других показателей волокна.
Удлинение полиолефиновых волокон при разрыве изменяется в довольно широком пределе. Высокомодульное полиэтиленовое волокно характеризуется небольшим удлинением (4-5%), присущим волокнам из очень жестких полимеров; удлинение обычного полиэтиленового волокна и моноволокна составляет 10-25%. Вследствие снижения степени кристалличности полимера волокнам алатон « из СЭП присущи высокие деформации до 35%. Для полипропиленового волокна разрывное удлинение составляет 15-40%; оно, как правило, несколько выше, чем у полиэтиленовых волокон. Моноволокно из изотактического полистирола довольно жесткое (разрывные деформации 5-6%). Такое волокно представляет интерес для некоторых специальных областей применения, например для изготовления армированных пластиков.
Начальный модуль характеризует сопротивляемость волокна внешним механическим воздействием. Чем больше начальный модуль волокна, тем лучше изделия из него сохраняют форму. Этот показатель для некоторых областей техники имеет решающее значение. Начальный модуль волокон не является постоянной величиной и зависит от скорости и величины деформации; поэтому на практике обычно определяется значение модуля при деформациях, равных 1 и 3%. Несмотря на большую гибкость макромолекул, полиолефиновые волокна характеризуются сравнительно большими начальными модулями, превышающими начальный модуль капронового волокна. В зависимости от условия получения начальный модуль полиэтиленовых моноволокон колеблется в пределах 420- 740 кгс/мм2, а полипропиленовых моноволокон — в пределах 420-600 кгс/мм2. Начальный модуль волокон алатон и волокна из СЭП вследствие пониженной степени кристалличности полимера несколько ниже, чем начальные модули других полиолефиновых волокон.
Необычайно большие начальные модули может иметь полиэтиленовое волокно, названное высокомодульным волокном. По этому показателю полиэтиленовое волокно приближается к вискозному и полиэфирному (из довольно жестких полимеров) и значительно превосходит капроновое волокно.
Основные механические свойства (прочность, удлинение, начальный модуль) полиолефиновых волокон легко можно регулировать в широком диапазоне путем изменения условий формования, вытягивания и терморелаксации волокна. Особенно большое влияние на механические свойства волокна оказывает степень вытягивания.
Эластические свойства полиолефиновых волокон. Качество текстильных изделий во многом зависит от соотношения обратимых (высокоэластических) и необратимых (остаточных) деформаций, развивающихся в волокне под влиянием приложенного напряжения. Наличие больших остаточных деформаций вызывает долго неисчезающую сминаемость тканей. При применении волокон в технике эластичность волокна играет еще большую роль.
Низкую эластичность полиэтиленового волокна, видимо, можно объяснить тем, что вследствие склонности полимера к холодному течению во время испытания успевают развиться необратимые деформации. Существует мнение, что полипропиленовое волокно обладает хорошими эластическими свойствами, не уступая по этому показателю капроновому волокну. По дан-
ным других исследователей10, эластичность полипропиленового волокна ниже эластичности полиамидного и почти такая же, как у полиэфирного волокна. На механические свойства волокон, особенно полиолефиновых, склонных к холодному течению, большое влияние оказывают условия испытания.
Томсон11 определял сминаемость полипропиленового и териленового волокон; териленовое волокно, как известно, обладает очень высокой устойчивостью к этому показателю.
При небольшом времени последействия восстановление начальной формы полипропиленового волокна значительно меньше, чем териленового, но с течением времени это различие почти сглаживается.
Для придания несминаемости тканям из полипропиленового волокна и из смеси его с другими волокнами целесообразно проводить термообработку тканей или волокон при температурах 125-135 °С под натяжением’2.
Усталостные свойства и устойчивость к истиранию. С эластичностью связаны усталостные свойства, определяемые в большинстве случаев по числу двойных изгибов,
Полиэтиленовое волокно в отличие от капронового характеризуется низкими усталостными свойствами. Полипропиленовое волокно по числу изгибов превосходит капроновое волокно.
По данным ВНИИВ’а при испытании в одинаковых условиях капроновое волокно выдерживает 3000, а полипропиленовое 8000 двойных изгибов до разрушения.
Устойчивость к истиранию имеет большое значение в условиях эксплуатации текстильных изделий. Она зависит от склонности волокон к фибриллированию, или расщеплению вдоль оси волокна. Склонность к фибриллированию в свою очередь зависит от степени кристалличности полимера, ориентации элементов структуры вдоль оси волокна и коэффициента трения.
Коэффициент трения играет важную роль в процессе переработки волокна и в ряде случаев при эксплуатации текстильных материалов. Полиэтиленовое волокно характеризуется очень низким коэффициентом трения, поэтому на ощупь оно воспринимается, как воскообразное волокно. Вследствие низкого коэффициента трения его целесообразно применять для изготовления обивочных тканей. Коэффициент трения полипропиленового волокна очень высокий, и это является одним из преимуществ полипропиленового волокна перед полиэтиленовым, так как волокно обладает менее выраженными воскообразными свойствами, что открывает более благоприятную перспективу его применения для изготовления товаров широкого потребления, особенно в смеси с другими волокнами.
Текучесть полиолефиновых волокон. При приложении внешнего усилия происходит деформация полиолефиновых волокон, развитие которой можно разделить на две стадии. На первой стадии почти мгновенно с момента приложения внешнего усилия волокно претерпевает деформацию, размеры которой зависят от величины приложенной нагрузки. Процесс растяжения на этом не заканчивается, и на второй стадии под влиянием постоянно действующей нагрузки происходит медленное увеличение деформации. При длительном воздействии внешнего усилия (величина которого значительно меньше величины предельной нагрузки) в результате постепенного увеличения удлинения может произойти разрыв волокна. Это явление, названное текучестью, присуще большинству полимерных материалов и особенно полиолефиновым волокнам (полиэтиленовому) , что является существенным недостатком этих волокон.
Текучесть полимеров может быть вызвана изменением конформаций макромолекул или их перемещением друг относительно друга. За время приложения внешнего усилия макромолекулы не успевают принять равновесных конформаций, соответствующих возникшему в полимере напряжению, поэтому с течением времени происходит выпрямление макромолекул, что внешне проявляется в увеличении удлинения волокна. Это явление известно под названием упругого последействия. При достижении равновесных конформаций макромолекул дальнейшее увеличение удлинения должно прекратиться. Однако в процессе деформации наряду с изменением конформаций макромолекул почти всегда наблюдается взаимное перемещение макромолекул и надмолекулярных агрегатов, т. е. развитие процесса стационарного вязкого течения, приводящего к накоплению необратимых деформаций.
Определяющим фактором, препятствующим развитие течения волокна, является интенсивность межмолекулярного взаимодействия. Малое межмолекулярное взаимодействие в полиолефиновых волокнах обусловливает их большую склонность к текучести. Аналогичная картина наблюдается для других полимеров (тефлон, силиконы), для которых также характерно небольшое межмолекулярное взаимодействие.

ТЕРМО-МЕХАНИЧЕСКИЕ СВОЙСТВА ПОЛИОЛЕФИНОВЫХ ВОЛОКОН (ТЕПЛОСТОЙКОСТЬ И ТЕРМОСТОЙКОСТЬ)

Одной из важных характеристик волокон является их устойчивость при повышенных температурах, определяемая теплостойкостью и термостойкостью волокон. Теплостойкость (обратимое изменение механических свойств волокна, подвергнутого действию высоких температур) зависит от’ интенсивности межмолекулярного взаимодействия и гибкости макромолекул. При повышенной температуре и даже небольших напряжениях происходит разрыв части межмолекулярных связей, вызывающий течение полимера. Возможно, частично происходит также рекристаллизация полимера. При охлаждении волокна восстанавливаются исходная структура и механические свойства волокна.
Теплостойкость полиолефиновых волокон очень низкая. Уже при 40 °С полиэтиленовое волокно теряет 35%, а при 80 °С — до 80% начальной прочности, при этом одновременно резко возрастает удлинение.
С увеличением молекулярного веса полимера теплостойкость полиэтиленового волокна несколько возрастает. Применение линейного полиэтилена (ПНД) вместо разветвленного полиэтилена (ПВД) способствует улучшению теплостойкости волокна. Потери прочности для полипропиленового волокна при повышенных температурах заметно меньше, чем для полиэтиленового, но по сравнению с другими волокнами эти потери все же значительны.
Начальный модуль полипропиленового волокна изменяется в меньшей степени, чем начальный модуль полиэтиленового волокна, поэтому даже при относительно высокой температуре (100°С) начальный модуль полипропиленового волокна только незначительно отличается от начального модуля найлона. Сминаемость изделий из полиэтиленового волокна увеличивается вследствие возрастания удлинения, снижения начального модуля и увеличения текучести при повышенных температурах.
Повышение теплостойкости и снижение текучести полиолефиновых, особенно полиэтиленовых волокон, открыло бы возможности для применения волокон этой группы в технике, так как по стоимости с ними не может конкурировать ни одно из известных волокон.
Исследования по повышению теплостойкости и снижению текучести полиолефиновых волокон проводятся в трех направлениях:
а) Образование меж молекулярных химических связей. В полиолефинах не содержится реакционно-способных функциональных групп, поэтому применение для этих целей химических методов исключается.
К наиболее перспективным методам структурирования относится радиационное облучение (см. гл. VII), которое начинает применяться для повышения теплостойкости литьевых изделий из полиэтилена, или облучение ультрафиолетовыми лучами в присутствии сенсибилизаторов.
б) Введение в полимер усиливающих наполнителей. Этот метод не является радикальным средством, но привлекает своей простотой и создает возможность заметно улучшить теплостойкость и другие механические свойства волокна.
в) Прививки к полиолефиновым волокнам теплостойких полимеров. Изучение влияния боковых привитых цепей на свойства полиолефиновых волокон начато недавно, и пока еще в литературе имеются противоречивые данные. По Марку и Атласу1, прививка к полипропиленовому волокну 15-20% полиакриловой кислоты (ПАК) или полиакрилонитрила (ПАН) способствует повышению температуры размягчения до 200 °С, увеличению начального модуля и улучшению стойкости модифицированного волокна. На улучшение тепловых характеристик модифицированных волокон указывается также в работе19. По данным других исследователей20, боковые цепи не оказывают влияния на теплостойкость полипропиленового волокна.

Большое значение для полиолефиновых волокон приобретает морозостойкость в связи с использованием их для изготовления рыболовных сетей и канатов. Температура хрупкости полиэтиленового волокна довольно низкая (около -100°С). Для полипропиленового волокна, по имеющимся данным, она зависит от степени ориентации волокна’5. Неориентированное полипропиленовое волокно становится хрупким при +18 °С, но по мере ориентации температура хрупкости понижается. Работоспособность полипропиленового волокна достаточно высокая при -20 °С, а ориентированные пленки сохраняют эластичность до температуры -70 °С.
По данным М. П. Зверева и Т. Ф. Костиной, на температуру хрупкости полипропиленового волокна существенное влияние оказывает его диаметр.
Полиэтилен устойчив к действию окислителей, поэтому термостойкость полиэтиленового волокна высокая. При воздействии температуры 100 °С в течение 24 ч на воздухе прочность полиэтиленового волокна почти не изменяется. Наличие в полипропилене подвижного атома водорода приводит к заметной окислительной деструкции полимера при повышенной температуре и, как следствие, к необратимой потере прочности волокна. При прогреве полипропиленового волокна на воздухе в течение 30 мин при 60, 100 и 120 °С потери прочности волокна составляют 4, 11 и 21% соответственно21.

7789 всего просмотров, 0 просмотров за сегодня

Комментарии к записи Структура и свойства эпоксидных полимеров отключены

Структура и свойства эпоксидных полимеров

| Эпоксидные полимеры | 17.11.2008

По определению Штаудингера , сетчатыми или пространственными называются полимеры, в которых составляющие их цепи соединены химическими связями в трех направлениях. Эпоксидные полимеры являются типичными представителями сетчатых полимеров, и их обычно используют в качестве модельных соединений при исследовании структуры и свойств трехмерных полимеров.

Читать далее »

5735 всего просмотров, 0 просмотров за сегодня

Комментарии к записи Развитие химии высокомолекулярных соединений отключены

Развитие химии высокомолекулярных соединений

| ИНФОРМАЦИЯ ПО ТЕМЕ | 17.11.2008

Исследования в области высокомолекулярных соединений — традиционное направление работ многих химических школ нашей страны. В свое время А. М. Бутлеров предложил рассматривать способность непредельных соединений к полимеризации в качестве критерия их реакционной способности. Отсюда берут свое начало классические работы в области полимеризационных и изомеризационных процессов А. Е. Фаворского, В. Н. Ипатьева и С. В. Лебедева. От исследований нефтяных углеводородов В. В. Марковниковым и затем Н. Д. Зелинским протягиваются нити к современным работам по синтезу всевозможных мономеров из нефтяного углеводородного сырья. С изучением углеводов П. П. Шорыгиным связаны работы его учеников в области химии высокомолекулярных соединений. Школу Н. Н. Семенова привело к исследованиям процессов полимеризации изучение цепных реакций. Коллективы,  руководимые А. Е. Арбузовым и А. Н. Несмеяновым, изучали процессы в области элементоорганических соединений, приводящие к образованию больших молекул. В. А. Каргин с сотрудниками внесли существенный вклад в изучение физико-химии полимеров.
Первым крупным достижением высокомолекулярной органической химии был синтез каучука на основе бутадиена, впервые осуществленный в промышленных масштабах в начале 30-х годов по методу С. В. Лебедева.
В 30 — 40-е годы советским химикам удалось решить целый ряд проблем, связанных с выяснением механизма свободно-радикальной полимеризации непредельных соединений. Это дало ученым ключ к познанию методов управления полимеризационными процессами.
Большим достижением была разработка полимеризационных и поликонденсационных способов получения многих исключительно важных для техники материалов, в частности кремнийорганических высокомолекулярных соединений. На этой основе удалось организовать производство всевозможных пластмасс, химических волокон, пленок, клеев самого различного назначения.
Значительные успехи достигнуты химиками, главным образом школой В. А. Каргина, в области изучения строения полимеров, что позволило перейти к решению задач модификации их физических свойств, к созданию научно обоснованных способов переработки полимеров в изделия.
Родившись в стенах классической органической химии, химия высокомолекулярных соединений постепенно выделилась в самостоятельную область, которая впитала в себя достижения как органической, так и физической химии и широко пользуется методами исследования, заимствованными из физики. Очень велик и, по-видимому, будет все более возрастать, выход химии высокомолекулярных соединений в народное хозяйство.
Однако, прежде чем достичь этого, потребовались десятки лет упорного труда наших химиков не только для изучения процессов формирования больших молекул — полимеров, но и для поиска промышленных методов синтеза их сырья — мономеров.

Развитие химии высокомолекулярных соединений

Синтез мономеров

В конце 20-х — начале 30-х годов, когда налаживалось промышленное производство каучука, было более или менее ясно, как получать каучук из дивинила или изопрена, однако задача создания экономичного способа синтез этих мономеров оставалась нерешенной. Требовалась большая предварительная работа по изысканию методов выделения изопентана из продуктов нефтепереработки и каталитической дегидрогенизации его с удовлетворительными выходами изопрена.
Что же касается дивинила, то с ним дело обстояло проще. Тщательные и разносторонние исследования по каталитическому превращению спиртов, осуществленные в начале текущего столетия В. Н. Ипатьевым, указывали на принципиальную возможность его получения непосредственно из этилового спирта. Эту возможность претворил в жизнь в 1928 г. С. В. Лебедев, работы которого явились крупным вкладом в мировую науку. Предложенный Лебедевым метод синтеза дивинила превосходит не только ранее разработанные, но и те, которые появились позже и использовались в промышленности других стран.
Наряду с синтезом дивинила из спирта уже с 30-х годов проводились систематические исследования, направленные на то, чтобы разработать промышленные методы получения дивинила и изопрена непосредственно из нефтяного сырья. Целый ряд работ был посвящен изучению кинетики и термодинамической стороны процессов, а также подбору катализирующих систем. К ним относились, в частности, исследования А. А. Баландина и сотрудников, выполненные в Институте органической химии АН СССР, работы Г. Д. Любарского, М. Я. Кагана и С. Я. Пшежецкого в физико-химическом институте им. Л. Я. Карпова. В результате, уже в 40-х годах удалось найти условия и катализаторы реакций дегидрогенизации бутиленов в дивинил (с выходом, близким к термодинамически возможному — 37 % на пропущенный олефин) и бутана в бутилен.
Систематические работы по дегидрогенизации пентанов и пентенов в изопрен начались лишь с 50-х годов. В них вместе со своими сотрудниками приняли  участие Б. А. Казанский, Н. И. Шуйкин, Ю. Г. Мамедалиев и ряд других исследователей. Были достигнуты выходы изопрена свыше 30 % на пропущенные исходные углеводороды. Изучая дегидрогенизацию изопентан-изопентеновых смесей, А. А. Баландин нашел условия, при которых изопрен получается с выходом 38 % на исходный изопентан и около 90 % на прореагировавшую смесь.
Проблема поиска промышленных методов получения мономеров стояла не только перед исследователями, занятыми синтезом каучука, но и, по существу, являлась ключевой при синтезе полимеров на основе производных акриловой кислоты и самых различных виниловых эфиров.
Немалая заслуга в решении этой проблемы принадлежит А. Е. Фаворскому и его школе. Так, в 30-х годах А. Е. Фаворский и И. Н. Назаров разработали метод синтеза винилэтинилкарбинолов, на основе которых Назаров затем получил разнообразные полимеры, нашедшие широкое применение в машиностроении, электротехнике, деревообделочной промышленности и т. д. в качестве склеивающих веществ.
Синтез мономеров имел решающее значение и при получении всевозможных элементоорганических высокомолекулярных соединений. В этом направлении в СССР было проведено особенно много важных исследований.
В 1935 — 1939 гг. ученые, прежде всего, К. А. Андрианов и его сотрудники, нашли удобные методы синтеза эфиров ортокремневой кислоты и их производных, а также целого ряда других простейших кремнийорганических соединений и, показав исключительную склонность этих веществ к полимеризации и поликонденсации, проложили первые пути к синтезу обширного класса новых полимеров — полиорганосилоксанов.

Исследование реакционной способности мономеров

Впервые вопрос о причинах различной способности к полимеризации разных по строению непредельных соединений был поставлен А. М. Бутлеровым. Затем его решению были посвящены систематические исследования и других русских ученых.
Изучая в начале 30-х годов полимеризацию диенов, приводящую к каучуку, С. В. Лебедев писал, что «…область синтетического каучука — это область нестойких органических молекул. Превращение дивинила и его гомологов в каучукоподобные полимеры — естественный для этих веществ переход от малостойкой молекулы мономера к более стойкой молекуле высокого частичного веса». С. В. Лебедев установил также, что различные производные этилена полимеризуются с различной скоростью и дают разные по качеству полимеры.
Установить закономерности, связывающие химическое строение веществ с их способностью к полимеризации, оказалось возможным, прежде всего, на основе всестороннего учета стерических факторов и особенностей электронного строения мономеров, а также путем изучения кинетики полимеризационных процессов. Значительные достижения в этой области принадлежат В. В. Коршаку.
Обобщив огромный экспериментальный материал, относящийся к полимеризации ненасыщенных соединений (олефинов и диенов), В. В. Коршак пришел к весьма интересным и важным результатам. Он установил, что реакционная способность мономеров в известных пределах увеличивается с увеличением полярности. Однако прямая пропорциональность здесь соблюдается далеко не всегда. Например, у (С2Н5)2С = СН2 дипольный момент равен 0,50, а реакционная способность этого соединения значительно ниже, чем у изобутилена.
Этот и другие факты побудили В. В. Коршака искать иные причины, определяющие способность соединения к полимеризации. Оказалось, что эти причины объясняются пространственными препятствиями. Большие заместители экранируют реакционные центры молекул мономера, причем степень влияния заместителей на полимеризацию прямо пропорциональна их объему и числу.
Гипотеза В. В. Коршака дает возможность объяснить различное отношение одних и тех же мономеров к ионной и радикальной полимеризации. Так, например, замещенные этилены, у которых экранирующий эффект заместителей недостаточно велик, сравнительно активны при ионной полимеризации и не полимеризуются по радикальному механизму. Объясняется это тем, что силы взаимодействия между ионами в ионном процессе уменьшаются с увеличением расстояния в значительно меньшей степени, чем силы взаимодействия между радикалом и молекулой олефина в радикальной реакции. Поэтому при ионной полимеризации пространственные затруднения, вызываемые заместителями, сказываются меньше, чем при радикальной.
Зависимость способности органических веществ к полимеризации от химического строения весьма плодотворно исследовалась также X. С. Багдасарьяном, А. Д. Абкиным и другими сотрудниками Физико-химического института им. Л. Я. Карпова.
В конце 40-х — начале 50-х годов X. С. Багдасарьян в ряде своих работ показал, что реакционная способность     мономеров прямо    пропорциональна эффекту сопряжения л, -л- и -о-связей в их молекулах и обратно пропорциональна эффекту сопряжения «холостого» электрона со всеми другими электронами в радикале. Таким образом, активность молекул мономеров и активность радикалов, полученных на основе этих мономеров, находятся не в симбатных, а в антибатных отношениях: чем активнее молекула мономера, тем менее активным оказывается получаемый на ее основе радикал.
В начале 60-х годов, благодаря исследованиям В. А. Каргина и В. А. Кабанова в области полимеризации, возникло новое направление, основанное на возможности изменения реакционной способности мономеров путем их кристаллизации или связывания в комплексы с другими веществами.
Классические приемы увеличения равновесных концентраций целевых продуктов состояли, как известно, в изменении температуры и давления. В. А. Каргин и В. А. Кабанов предложили принципиально иной подход к решению вопроса об увеличении выхода полимера и степени полимеризации. Сущность этого подхода связана со своеобразным каталитическим влиянием комплексообразователей, в частности реакционной среды.
Схема превращения мономера М в полимер никак не отражает взаимодействия молекул М и Мп со средой. Если это взаимодействие сильное, то введение в термодинамические и кинетические уравнения коэффициентов активностей, как это обычно делают в случае сравнительно слабых взаимодействий, утрачивает смысл.
В отличие от чистого мономера его комплексу в ряде случаев «разрешено» полимеризоваться с образованием соответствующего комплекса полимера. Развиваемое В. А. Каргиным и В. А. Кабановым направление в области полимеризации открывает большие перспективы для моделирования синтеза полимерных цепей в живых клетках. Представим себе, что частицы Х в схеме (II) химически связаны в длинные цепи, т. е. образуют макромолекулы. Тогда молекулы мономера выстраиваются вдоль заранее синтезированных полимерных «матриц».

Развитие представлений о полимеризационных процессах

Наряду с выяснением вопросов кинетики и механизма отдельных реакций полимеризации проводились также исследования и более общего характера; они охватывали результаты изучения многих реакций полимеризации и представляли уже обобщения, определенные теоретические концепции. Наиболее удачными из них первоначально оказались те, которые примыкали к цепной теории, — может быть потому, что этой теории особенно «повезло». Ведь ученые принимали самое активное участие в создании основ цепной теории и уже в 20-х годах фактически стали лидерами в этой области.
Идеи о приложении теории цепных реакций к явлениям полимеризации впервые были выдвинуты в 30-х годах одновременно несколькими исследователями. Н. Н. Семенов осветил этот вопрос в своей книге, вышедшей в 1934 г. Затем, наряду с отдельными работами, к систематическим исследованиям в этой области приступили С. С. Медведев и сотрудники.
С. С. Медведев и его сотрудники, прежде всего, экспериментально подтвердили представления о развитии полимеризационных цепей через свободные радикалы, а затем детально изучили начальный акт полимеризации — инициирование.
В дальнейшем изучение реакции инициирования тесно переплелось с исследованиями реакционной активности радикалов и мономеров (Н. Н. Семенов, X. С. Багдасарьян, А. Д. Абкин). В изучении процессов инициирования радикальной полимеризации, кроме С. С. Медведева и его сотрудников, принимали участие еще многие советские химики. Наиболее систематические исследования в этом направлении проводили Б. А. Долгоплоек и сотрудники, открывшие явление окислительно-восстановительного инициирования радикальных процессов. Полученные ими результаты позволили химикам оперировать широкой гаммой всевозможных инициаторов радикальной полимеризации, дифференцирование применять их в соответствии с их активностью, осуществлять полимеризацию даже в тех случаях, когда она казалась невозможной (например, виниловые эфиры + радикалы с неспаренным электроном у углерода), и, наконец, посредством только одних инициаторов в известной степени управлять реакцией и получать полимеры с наиболее высоким молекулярным весом.
В решение сложных вопросов, относящихся к следующему элементарному акту-развитию полимеризационных цепей, советские химики внесли свой очень важный вклад.
С. С. Медведев и сотрудники показали, что весь процесс полимеризации, инициированной свободными радикалами, протекает при помощи последних; растущая цепь полимера является свободным радикалом. Образование полимера происходит за счет взаимодействия свободного радикала с двойной связью мономера.
Характер роста цепи определяет структуру полимерной молекулы. Исследования Б. А. Долгоплоска, А. А. Короткова, А. Л. Клебанского и других, главным образом ленинградских химиков, позволили точно определять тип присоединения мономеров к растущей цепи при радикальной, а в равной мере и при ионной полимеризации, что сыграло большую роль в решении задачи воссоздания натурального каучука.
С середины 50-х годов появилось новое и, как оказалось, очень важное направление исследований, также связанное с радикальным ростом, или, лучше сказать, с формированием полярной макромолекулы. В результате детального изучения полимеризационных процессов выяснилось, что наряду с более или менее изученными реакциями имеет место ряд дополнительных, вторичных реакций, в которых принимает участие уже    сформировавшаяся цепь полимера. Эти вторичные процессы часто существенно изменяют структуру и свойства полимеров. Начало этому направлению исследований было положено работами С. Е. Бреслера, С. Я. Френкеля и сотрудников, которые установили «аномально» сложные мультимодальные молекулярновесовые распределения образцов полимеров и объяснили это удвоением и утроением молекулярных весов отдельных групп молекул вследствие вторичных реакций.
Большим вкладом в учение о кинетике реакций полимеризации служат проведенные в последние годы исследования Н. С. Ениколопяна и сотрудников, в результате которых была установлена ранее не известная элементарная реакция, происходящая при полимеризации гетероциклических соединений — реакция передачи цепи с разрывом.
Сущность вновь открытого элементарного акта состоит в том, что растущий полимерный активный центр атакует «готовую» или растущую макромолекулу по «закону случая» — в любом месте цепи — с образованием новой макромолекулы и нового активного центра.
Если при передаче цепи с разрывом растущий активный центр отличается по химическому составу от атакуемой макромолекулы, то образуется блок-сополимер.
Одним из важных практических следствий успешных работ в области изучения радикальных процессов является теломеризация — преднамеренный обрыв роста цепи с целью синтеза «теломеров» — соединений содержащих активные группы по обоим концам молекулы.
В начале 50-х годов к разработке методов синтеза этих важных бифункциональных производных с использованием теломеризации приступил большой коллектив химиков Академии наук СССР и Государственного института азотной промышленности под руководством А. Н. Несмеянова и Р. X. Фрейдлиной. При этом были изучены как сами процессы теломеризации — их кинетика, механизм реакций, так и химические превращения полученных продуктов, а на их основе — новых волокнистых материалов.
Если о теории радикальной полимеризации теперь можно говорить как о самостоятельном разделе цепной теории, или как о единой концепции, причем такой, которая в значительной степени создана трудами советских ученых, то применительно к ионной полимеризации этого сказать нельзя. Единой теории ионной полимеризации пока не существует. По-видимому, можно лишь утверждать, что она начала формироваться, подобно теории радикальной полимеризации, как ответвление более общих кинетических теорий, а именно теории кислотно-основного катализа и цепной теории.

Разработка основ теории поликонденсации

Поликонденсация как путь синтеза высокомолекулярных соединений разработана в основном школой В. В. Коршака. По мнению В. В. Коршака, полимеризация и поликонденсация — «частные случаи тех двух основных типов реакций, на которые можно разбить все превращения в органической химии: это реакции присоединения и реакции замещения». Следовательно, под реакцией поликонденсации нужно понимать процесс образования высокомолекулярных соединений из низкомолекулярных исходных веществ, который одновременно сопровождается выделением какого-либо низкомолекулярного продукта (воды, спирта и т. п.).
В связи с тем, что целый ряд высокомолекулярных соединений может быть получен как полимеризацией, так и поликонденсацией.

В. В. Коршак положил в основу классификации высокомолекулярных соединений принцип химического строения, способный определить все их свойства и не зависящий от путей синтеза.
В. В. Коршак и его сотрудники выяснили роль деструктивных реакций в процессе поликонденсации: ацидолиза и аминолиза полиамидов, алкоголиза полиэфиров. Они нашли, что эти реакции ускоряются с повышением температуры и определенным образом зависят от молекулярного веса поликонденсата, рН среды и природы деструктирующего агента.
Г. С. Петров тщательно изучил формолиз мочевино-формальдегидных смол и фенолиз фенолоформальдегидных смол, предложив соответствующие меры подавления этих реакций при синтезе высокомолекулярных соединений.
В. В. Коршаком исследована кинетика обменных реакций между полиамидами разного молекулярного веса и полиэфирами (амидолиз и эфиролиз). В результате было установлено, что процессы поликонденсации, для которых характерна обратимость, представляют сложные системы обменных равновесных и деструктивных реакций.
Особенно важным является установление большой роли обменных реакций между растущими макромолекулами и исходными веществами, которые определяют весь характер реакции, ее основные закономерности и молекулярно-весовое распределение образующегося полимера. Весьма существенное значение для построения теории процессов поликонденсации имело установленное В. В. Коршаком и сотрудниками «правило неэквивалентности функциональных групп», позволяющее понять закономерности роста макромолекулы в процессах поликонденсации и дающее в руки исследователю мощный рычаг для управления величиной молекулярного веса образующегося полимера.
5. Новые пути синтеза полимеров
Химиками были открыты принципиально новые методы синтеза полимеров, отличающиеся не только своей практической значимостью, но и оригинальностью путей получения продуктов.
Детальное изучение открытых С. С. Наметкиным и Л. Н. Абакумовской реакций гидродегидрополимеризации
имело большое значение для осуществления очистки нефтяных дистиллятов, получения синтетических смазочных масел и полимерных продуктов посредством серной, фосфорной кислот и других катализаторов.
Сюда же относятся весьма интересные реакции гидродимеризации, открытые в 1942 г. А. Д. Петровым и Л. И. Анцус:
Я. Т. Эйдус, Н. Д. Зелинский и сотрудники открыли реакции гидроконденсации и гидрополимеризации олефинов. Изучая механизм синтезов на основе окиси углерода и водорода, авторы экспериментально доказали важную роль метиленовых радикалов в формировании цепи предельных углеводородов: nCH 2 — С n Н2.
На этом основании был сделан вывод, что этилен, прибавленный к исходной смеси, должен включаться в процесс полимеризации метиленовых радикалов. Проверка подтвердила эту гипотезу и привела к открытию новой реакции — каталитической гидроконденсации окиси углерода с олефинами.
Резкое уменьшение в исходных продуктах окиси углерода и водорода привело к открытию реакций гидрополимеризации олефинов.
В ходе этих работ дано первое экспериментальное доказательство радикально-цепного механизма синтезов на основе СО + Н2; при этом развитие цепей в данном случае осуществляется на поверхности — это плоские или закрепленные цепи.
Одним из новых оригинальных путей синтеза высокомолекулярных соединений явился метод полирекомбинации, открытый В. В. Коршаком, С. Л. Сосиным и сотрудниками.
При молярном соотношении инициирующей перекиси к исходному углеводороду 2:1 молекулярный вес полимера достигает 10 000 и более. Благодаря использованию реакции полирекомбинации, в полимер могут быть превращены насыщенные углеводороды, эфиры и другие вещества, не способные полимеризоваться обычными путями.

3923 всего просмотров, 0 просмотров за сегодня

Комментарии к записи Количественные и качественные характеристики, паспортные данные, информация о внешнем виде, данные по изготовлению, свойства, упаковка сэндвич-панелей отключены

Количественные и качественные характеристики, паспортные данные, информация о внешнем виде, данные по изготовлению, свойства, упаковка сэндвич-панелей

| Сэндвич панели | 17.11.2008

Сэндвич панелями называют и панели, произведенные на стендовом полуавтоматическом оборудовании, разделенном на несколько разрозненных этапов по времени и месту, где сначала происходит профилирование двух листов стали; потом данные листы снимаются с линии профилирования и переносятся к месту укладки и ручного склеивания утеплителя, который укладывается на нижний лист металла,

Читать далее »

4572 всего просмотров, 0 просмотров за сегодня

Комментарии к записи Природные и синтетические смолы отключены

Природные и синтетические смолы

| ИНФОРМАЦИЯ ПО ТЕМЕ | 17.11.2008

Природные смолы

К природным (естественным) смолам принадлежат продукты жизнедеятельности животных или растительных организмов. Из естественных смол в производстве электроизоляционных лаков и компаундов наиболее широко применяется канифоль, значительно меньше шеллак и копалы. Природные растительные смолы получают упариванием растительных соков, которые вытекают из растений естественным путем или при надрезании стеблей и стволов. Их можно экстрагировать из растительного сырья такими растворителями, как спирт и эфир. К растительным смолам относится, например, сосновая канифоль, а также смола, получаемая из клубней скаммонии (вьюнка смолоносного Convolvulus scammony), и ископаемые окаменелые смолы янтарь и копал. Смолы животного происхождения редки. Одна из них, шеллак, представляет собой выделения лаковых червецов, живущих на растениях семейства мимозовых в Индии. Некоторые растительные смолы используют в медицине; так, смола скаммонии применяется как слабительное. Другие смолы, например, шеллак, входят в состав политур. Имеется множество сортов синтетических смол, используемых для получения пластмасс. Канифоль (гарпиус)- хрупкая прозрачная в тонком слое смола, получаемая из смолы (живицы) хвойных деревьев, преимущественно сосны, способом отгонки жидких составных частей — терпентинного масла (скипидара). Состав живицы может колебаться в зависимости от условий местности и сорта живицы. Другой способ добывания канифоли — экстракционный, заключающийся в том, что куски дерева, пни, ветви обрабатываются растворителями, которые затем подвергаются разгонке. Существуют также смолы деревьев других хвойных пород, например, кедра, пихты и лиственницы. Их обычно называют бальзамами. Пихтовый бальзам (канадский бальзам), отличается очень высокой степенью прозрачности и нормированным показателем преломления. Его применяют в качестве клея для склеивания оптических линз. По химическому составу канифоль состоит главным образом из абиетиновой кислоты (С 20 Н 30 О 2 ) и ее изомеров, остальное — неомыляемые, зола, влага и механические примеси. Содержание кислот в канифоли составляет 85 -90%. Канифоль хорошо растворима в спирте, бензоле, скипидаре, минеральных и растительных маслах. При нагревании выше температуры плавления значительно увеличивается проводимость и tg ?. Канифоль применяется в чистом виде для изготовления заливочных кабельных масс, пропиточных компаундов, искусственных копалов и модификации полиэфирных смол. Чаще всего канифоль применяется в виде различных препаратов: эфира гарпиуса (глицериновый эфир канифоли) и резинатов, представляющих собой соли абиетиновых кислот (марганцовые, кобальтовые, кальциевые и др.). Введение в состав электроизоляционных лаков больших количеств канифоли значительно снижает их влаго и водостойкость и способствует размягчению при повышенных температурах. О канифоли создается впечатление, как о хорошем диэлектрике. И многие заблуждаются, читая вышеуказанные характеристики. Но это не так: во-первых, ее реальное объемное сопротивление на три порядка меньше указанных расчетных значений, во-вторых, она совершенно не устойчива к воздействию атмосферной влаги: гидролизуется и омыляется. Поэтому она может использоваться только в герметичных электроизоляционных конструкциях, в силовых кабелях и т.д. Об этом приходится говорить, поскольку некоторые технологи, заблуждаясь, оставляют канифоль на платах после пайки, не смывая ее, ссылаясь на вышеуказанные электроизоляционные характеристики. Не зная, что продукты ее гидролиза — коррозионная среда, разрушающая всю конструкцию. В настоящее время канифоль практически не используется в составе различных радиофлюсов, а заменяется ее синтетическими аналогами. Например, фенолформальдегидными смолами (новолаками). Шеллак. Шеллак получают из гуммилака, представляющего собой смолу, образующуюся на ветвях тропических растений вследствие укуса особого насекомого, которое, перерабатывая сок в своем организме, выделяет его в виде смолы, называемой гуммилаком. Главные места добычи гуммилака: Индия, Бирма, Малайские острова, Индонезия. Шеллак получают в виде чешуек — от светло-лимонного до темно-оранжевого цвета, в зависимости от степени очистки. По химическому составу шеллак состоит главным образом из эфиров алейритиновой (C16 H 32 O 5) и шеллоновой (C 15 H 20 O 5) жирных кислот. Торговый шеллак содержит шеллачной смолы 83 -86%, шеллачного воска 3 -6%, влаги до 2%, красящие вещества и другие примеси. При нагревании (до 35 °С) шеллак становится пластичным и при
80 °С плавится; продолжительный нагрев при 100 -110 °С приводит шеллак к потере способности плавиться и растворяться. Растворяется шеллак лучше всего в спирте, аммиаке, в растворах едких щелочей, соды, буры. Шеллак хорошо сплавляется с канифолью, глифталями, битумами и другими смолами. Шеллак обычно применяется в виде спиртовых растворов (лаков) различной концентрации, а также в виде сухого порошка. В производстве электроизоляционных лаков шеллак применяется в ограниченном количестве; в виде порошка идет для изготовления некоторых марок коллекторного миканита. Копалы. Копалы представляют собой смолы, обычно ископаемые, растительного происхождения, добываемые главным образом в тропических странах, и обозначаются географическими названиями мест, где они добываются. В СНГ копалы имеются на Кавказе, на Дальнем Востоке и в Калининградской области на побережье Балтийского моря (янтарь). Копалы представляют собой твердые вещества в виде кусков различной формы, цвета и прозрачности, отличающиеся высокой температурой плавления. Янтарь обладает наивысшей твердостью и температурой плавления по сравнению с другими ископаемыми смолами. Янтарь, почти нерастворим ни в каких растворителях. Температура его размягчения 175 -200 °С, температура плавления — выше 300 °С. Расплавленный янтарь растворяется в скипидаре, сероуглероде, бензине и маслах. Янтарь имеет очень высокие диэлектрические свойства, особенно высокое сопротивление изоляции, что делает его ценным диэлектриком для изготовления электроизмерительных приборов. Янтарь нужно выделить как самый лучший природный диэлектрик. Его до сих пор используют в электрометрах и электретах. Спиртовой раствор янтаря — хороший флюс, остатки которого действительно не нужно смывать, если платы потом не лакируют. Его остатки — диэлектрик. Для изготовления подобных флюсов вполне можно применять «несортовой », так называемый технический янтарь. Нерастворимые в спирте примеси легко отделяются методом центрифугирования с дальнейшей фильтрацией. В дополнение к микропористым фильтрам идут также ионообменные смолы, которые осуществляют еще более тонкую очистку. В производстве электроизоляционных лаков копалы ранее очень широко применялись для изготовления высококачественных масляно-копаловых лаков. В связи с развитием промышленности синтетических смол они потеряли свое значение, и применение их очень ограничено.

Твердые органические диэлектрики

К органическим диэлектрикам относятся материалы, в составе которых находится углерод. В качестве добываемые преимущественно в Африке и Юго-Восточной Азии. Раньше благодаря растворимости в растительных маслах они довольно широко применялись в производстве электроизоляционных лаков, сейчас практически вытеснены синтетическими полимерами. Я Янтарь — также ископаемая смола, добываемая в России, обладающая очень высокими электрическими параметрами: удельное сопротивление органических диэлектриков в промышленности применяют как природные, так и синтетические полимеры, которые получают методом химического синтеза. Часто их называют смолами. Открытие синтетических полимеров сыграло большую роль в развитии многих отраслей, в том числе электротехники и радиоэлектроники. Большинство органических диэлектриков представляют собой высокомолекулярные вещества, которые содержат очень большое число атомов или простейших молекул. Основу многих высокомолекулярных диэлектриков составляют полимерные соединения, которые получают из мономеров (низкомолекулярных соединений) в процессе реакций полимеризации или поликонденсации. Полимеризация — это процесс соединения большого числа мономеров с образованием нового высокомолекулярного вещества (полимера) без выделения побочных продуктов реакции. Поликонденсация — это процесс соединения разнородных мономеров с образованием полимера и выделением побочного продукта реакции. Свойства полимеров определяются химическим составом, взаимным расположением атомов и строением макромолекул. По строению макромолекулы полимеров делятся на линейные (нитевидные) и пространственные (сетчатые). Линейные полимеры представляют собой сочетание звеньев одной определенной структуры. Сочетание двух или трех химически различных звеньев образуют полимеры, которые называют совмещенными или сополимерами. Линейные полимеры относят к термопластичным материалам. Они обладают следующими свойствами: температура размягчения 50…120°С, сравнительно высокий температурный коэффициент объемного расширения ТКР, невысокая теплостойкость, легко деформируются при нагревании и затвердевают при охлаждении, имеют аморфную структуру и при нагревании плавно переходят из твердого состояния в жидкое или текучее. Электрические свойства линейных полимеров зависят от расположения атомов или определенной группы атомов в цепи макромолекулы. Линейные полимеры с несимметричным строением атомов являются полярными и имеют большие диэлектрические потери. Линейные полимеры с симметричным строением мономеров являются неполярными и имеют малые диэлектрические потери. Большинство материалов на основе линейных полимеров имеют аморфную структуру и при нагревании плавно переходят из твердого состояния в жидкое или текучее. Некоторые полимеры склонны к образованию кристаллов, т. е. способны кристаллизоваться. В пространственных полимерах макромолекулы связаны поперечными химическими связями. Пространственные полимеры относятся к термореактивным материалам. Они обладают следующими свойствами: большая жесткость, чем у линейных полимеров; при нагревании не размягчаются; не гибкие; не способны образовывать пленки и волокна; не растворяются в растворителях. По тепловым свойствам полимеры подразделяют на термопластичные и термореактивные. Термопластичные материалы (термопласты) характеризуются тем, что нагревание до температуры, соответствующей пластическому состоянию, не вызывает необратимых изменений их свойств . Они тверды при достаточно низких температурах, но при нагревании становятся пластичными и легко деформируются. В настоящее время термопластичные материалы составляют примерно 75% всех потребляемых мировой электротехнической промышленностью полимерных материалов. В термореактивных (термоотверждающихся) материалах при достаточной выдержке при высокой температуре происходят необратимые процессы, в результате которых они теряют способность плавится и растворяться, становясь твердыми и механически прочными.

Полиэфирные смолы

Полиэфирные смолы получают в результате реакции поликонденсации различных многоатомных спиртов (гликоля, глицерина и др.) и многоосновных органических кислот (фталевой, малеиновой и др.) или их ангидридов. По физическим свойствам они близки к природным смолам (канифоль, шеллак). Из полиэфирных смол наибольшее распространение получили лавсановая смола (полиэтилентетрафталат), глифталевая смола, поликарбонаты. Лавсановую смолу (полиэтилентетрафталат, лавсан) получают поликонденсацией терефталевой кислоты и этиленгликоля. Он является термопластичным диэлектриком кристаллического или аморфного строения. В результате реакции поликонденсации терефталевой кислоты и этиленгликоля при медленном охлаждении образуется непрозрачный кристаллический лавсан (кристаллическая фаза до 7.5°/о). Кристаллический лавсан имеет высокую температуру плавления 265°С; высокую механическую прочность в широком диапазоне температур; хорошие электроизоляционные свойства; стоек к действию слабых щелочей, соляной кислоты, эфиров, масел, жиров, плесени и грибков; не устойчив к действию крепкой азотной и серной кислот, фенола, хлора; светопроницаемость пленки такая же, как у стекла, а также имеет малые гигроскопичность и газопроницаемость. Кристаллический лавсан стареет под действием солнечных лучей. Лавсан кристаллического строения применяют для изготовления волокон, пряжи, тканей, тонких электроизоляционных пленок. Волокна и пленки используют для изоляции проводов и кабелей. Лавсановая конденсаторная пленка обладает высокой электрической прочностью и повышенной нагревостойкостью. В результате реакции поликонденсации терефталевой кислоты, этиленгликоля, глицерина к отвердителя (бутилтитаната) при быстром охлаждении получают прозрачный аморфный лавсан. Аморфный лавсан используют при изготовлении эмалированных проводов, при производстве электроизоляционных лаков. Пленки лавсановых лаков термореактивны, т. е. не размягчаются при нагревании. Глифталевую смолу получают из простейшего трехатомного спирта глицерина и избыточного количества фталевого ангидрида при температуре 150…200°С в алюминиевых котлах. Это термореактивные смолы с ярко выраженными дипольно-релаксационными потерями. Глифталевые смолы обладают следующими свойствами: высокая нагревостойкость, до температуры 130°С, высокая гибкость, достаточно высокая твердость, высокая клеящая способность, растворимость в органических растворителях, размягчаются при нагревании, повышенная гигроскопичность при неполной полимеризации, стойкость к поверхностным разрядам. Применяют как основу для клеящих, пропиточных и покрывных лаков, пленки которых стойки к нагретому минеральному маслу; для изготовления лаков, пластмасс, клеев. Поликарбонаты — это полиэфиры угольной кислоты. Поликарбонаты имеют хорошие электрические и механические свойства, относительно высокую температуру размягчения (кристаллический поликарбонат размягчается при температуре 140°С), хорошую химическую стойкость, невысокую гигроскопичность. Применяют поликарбонаты для изготовления слоистых пластиков, компаундов, пленок для изоляции в электрических машинах. Кремнийорганические смолы. Кремнийорганические полимеры (смолы) с пространственной структурой являются термореактивными. Кремнийорганические смолы обладают высокой нагревостойкостью до температуры +250°С’, высокой холодостойкостью до температуры -60°С; хорошими диэлектрическими свойствами, которые мало зависят от температуры; малой гигроскопичностью; химической инертностью. В промышленности кремнийорганические смолы применяют для изготовления электроизоляционных материалов, таких как стеклотекстолиты, слюдяная изоляция, компаунды, кремнийорганический лак, покрывные эмали, резиностеклоткани и др. Эпоксидные смолы. Эпоксидные смолы получают в результате хлорирования глицеринов с двухатомными или многоатомными фенолами в щелочной среде. В структуре эпоксидных смол содержится не менее двух эпоксидных групп, в результате связывания которых происходит их отвердение. В чистом виде эпоксидные смолы представляют собой термопластичные низкоплавкие жидкие материалы, которые легко растворяются во многих органических растворителях (ацетоне, толуоле, хлорированных углеводородах и др.), не растворяются в воде, мало растворяются в спиртах, длительно хранятся, не изменяя свойств. После добавления отвердителей эпоксидные смолы быстро отвердевают, приобретая пространственное строение. Отвердевание проходи
т в результате реакции полимеризации без выделения побочных продуктов (воды и других низкомолекулярных веществ). Отвердевшие эпоксидные смолы являются термореактивными и могут образовывать толстый слой монолитной, водонепроницаемой изоляции. В зависимости от типа отвердителя эпоксидные смолы могут отвердевать при комнатной температуре («холодное отвердение» ) или с использованием нагревания от 80 до 150 °С, а также при атмосферном или повышенном давлении. Для холодного используют азотосодержащие вещества, а для отвердения при нагревании — ангидриды органических кислот. Выбор отвердителя влияет на свойства отвердевшей эпоксидной смолы. Отвердевшие, эпоксидные смолы обладают сравнительно небольшой усадкой, примерно 0,5…2%; высокой адгезией к пластмассам, стеклам, фарфору, металлам; нагревостойкостью выше, чем у кремнийорганических смол; механическими свойствами выше, чем у кремнийорганических смол стоимостью меньшей, чем кремнийорганические смолы. Применяют для изготовления лаков, клеев, заливочных компаундов. Многие эпоксидные смолы токсичны и могут вызывать кожные заболевания, при работе с ними необходимо соблюдать правила техники безопасности. Отвердевшие эпоксидные смолы уже не оказывают на организм человека вредного воздействия.

9754 всего просмотров, 0 просмотров за сегодня

Комментарии к записи Особенности углепластиков в сравнении с другими армированными пластиками отключены

Особенности углепластиков в сравнении с другими армированными пластиками

| УГЛЕПЛАСТИКИ | 17.11.2008

Среди полимерных материалов, армированных непрерывными волокнами, углепластики — одни из наиболее перспективных. В настоящее время для получения армированных пластиков используются, как известно, не только углеродные волокна. Уже продолжительное время применяются борные волокна, которые по сравнению с углеродными волокнами обладают большей жесткостью. Арамидные волокна, с появлением которых изменились наши представления о свойствах органических волокон, имеют значительно меньшую плотность, чем углеродные волокна. Волокна из карбида кремния и оксида алюминия весьма стойки к воздействию высоких температур. Поэтому углеродные волокна используют тогда, когда они могут успешно конкурировать по свойствам с другими волокнами. Недостатки материалов на основе углеродных волокон можно компенсировать, используя гибридные армированные пластики, которые получают путем сочетания в одном материале углеродных и других типов волокон. Таким образом, при создании современных композиционных материалов применяют дифференцированный подход к выбору волокон или их комбинаций.

Арамидные волокна и армированные пластики на их основе

Широко известный представитель полиамидных волокон — найлон. Полиамиды наряду с основными и кислотными группами могут содержать ароматические ядра, и в этом случае волокна из них называются арамидными. Из жесткоцепных арамидов с паразамещенными звеньями фирмой «Дюпон» изготавливаются арамидные волокна марки KEVLAR.

Фирмой «Энка» разработаны волокна марки ARENKA, фирмой «Тэйдзин» — волокна марки НМ-50; известны и другие волокна этого типа. Наряду с высокой прочностью и высоким модулем упругости арамидные волокна имеют низкую плотность, обладают соответственно высокой удельной прочностью и поэтому с успехом применяются в качестве армирующих волокон для композиционных материалов.

Характеристики композиционных материалов на основе арамидных волокон.

Основным достоинством этих материалов является высокая удельная прочность. Поэтому, используя арамидные волокна, можно снижать вес конструкций, что оказывается весьма эффективным с точки зрения улучшения технико-экономических характеристик летательных аппаратов и т. д. Например, если сравнивать характеристики армированных пластиков на основе волокон KEVLAR-49 и других волокон, то из данных табл. 8.2 следует, что можно снизить вес изделий на основе арамидных волокон по сравнению с изделиями на основе стеклянных волокон примерно на 50% и на основе углеродных волокон примерно на 20%. Поэтому материалы на основе волокон KEVLAR-49 используются для изготовления элементов конструкций космического корабля «Спейс шаттл».
Эти материалы имеют также более высокую ударную вязкость по сравнению с высоко модульными углепластиками. Поэтому для повышения ударной вязкости углепластиков эффективной оказывается гибридизация углеродных волокон с волокнами KEVL AR-49, что дает возможность получать композиционные материалы со сбалансированными заданным образом свойствами по сравнению с материалами на основе одного типа волокон.
Композиционные материалы на основе арамидных волокон характеризуются значительной стойкостью к разрушению, которая проявляетсяв высоких значениях удельной прочности и ударной вязкости материала. Подобно металлам они обладают способностью к пластической деформации, что препятствует хрупкому характеру разрушения. Демпфирующие характеристики армированных пластиков на основе арамидных волокон в 4—5 раз выше, чем те же характеристики углепластиков. Они обладают также рядом других свойств, которые не могут быть достигнуты при использовании углеродных волокон. Поэтому арамидные волокна представляются весьма перспективными для практического применения.

Перспективы разработки новых арамидных волокон

Как уже отмечалось, арамидные волокна — один из перспективных видов волокон для армирования композиционных материалов. В настоящее время интенсивно разрабатываются новые типы арамидных волокон с улучшенными свойствами. Например, фирмой Du Pont разработаны арамидные волокна марки FIBER D с модулем упругости, в 1,3 раза большим, чем у волокон KEVLAR49. Для улучшения свойств арамидных волокон часто используют обработку их поверхности. Повышение адгезионного взаимодействия в системе армирующие волокна — полимерная матрица существенно улучшает статические и динамические свойства композиционных материалов. По современным данным, имеется значительный резерв для повышения адгезионного взаимодействия арамидных волокон с полимерной матрицей. Для поверхностной обработки волокон используют различные аппреты, плазменную обработку поверхности, ионное травление  и другие методы.

Перспективы разработки армированных пластиков на основе арамидных волокон

С учетом высоких значений удельной прочности, ударной вязкости и других ценных характеристик арамидных волокон, по-видимому, перспективно широкое применение армированных пластиков на их основе в качестве конструкционных материалов в самолето-, ракето- и судостроении. Предполагается также рост применения этих материалов для военных целей (пуленепробиваемые жилеты, каски и т. д.). Перспективность перечисленных областей применения определяется комплексом указанных выше свойств.
По всей вероятности наряду с использованием арамидных волокон в моноволокнистых конструкционных материалах их будут применять в гибридных материалах путем сочетания с углеродными и другими волокнами.

Борные волокна и армированные материалы на их основе

Борные волокна имеют плотность 2,63 г/см3, прочность при растяжении 4300 МПа и модуль упругости 380 ГПа; по сравнению с углеродными волокнами они обладают преимуществами благодаря сочетанию высоких прочностных и упругих свойств. Механические характеристики борных волокон практически совпадают с аналогичными характеристиками углеродных волокон. Следует отметить, что диаметр борных и углеродных волокон существенно различается. Это необходимо иметь в виду при оценке их работоспособности в составе армированного материала в условиях различного напряженного состояния. Борные волокна обычно имеют диаметр 100 мкм; выпускаются также борные волокна диаметром 140 и 200 мкм. По сравнению с углеродными волокнами, диаметр которых составляет 5-6 мкм, площадь поперечного сечения борных волокон на 2-3 порядка выше. При производстве борных волокон химическим осаждением на сердечник из вольфрамовой проволоки или на углеродное волокно увеличение диаметра борных волокон приводит к повышению производительности технологического процесса их производства. Больший диаметр волокон дает следующие преимущества: 1) простоту в обращении; 2) хорошее проникновение матрицы в межволоконное пространство вследствие малой удельной внешней поверхности; 3) высокое сопротивление потере устойчивости при сжатии.
При получении высококачественных композиционных материалов очень важным фактором является хорошая смачиваемость поверхности волокон связующим. Обычно полимерные связующие хорошо смачивают поверхность армирующих волокон; при использовании металлических связующих проблема смачиваемости приобретает особое значение. И борные, и углеродные волокна плохо смачиваются расплавами металлов и сплавов. Поэтому, для того чтобы металлическое связующее достаточно хорошо проникало в межволоконное пространство, необходимо проводить специальную обработку поверхности волокон. Однако такая обработка элементарных волокон в пучке затруднена контактом волокон друг с другом; это обстоятельство характерно для углеродных армирующих материалов, состоящих из большого числа элементарных волокон. Следует отметить, что вещества, нанесенные на поверхность тонких волокон, оказывают заметное влияние на свойства матрицы. Так, при нанесении поверхностного слоя толщиной 0,5 мкм на волокна диаметром 5 мкм площадь поперечного сечения поверхностного слоя составляет 44% площади поперечного сечения волокон. Это приводит к заметному изменению механических и физических свойств матрицы. Площадь поперечного сечения поверхностного слоя такой же толщины, нанесенного на борные волокна диаметром 100 мкм, составляет всего лишь 2% площади поперечного сечения волокон и его влияние на свойства матрицы менее значительно.
Недостатком волокон большого диаметра является их малая гибкость. Углеродные волокна могут быть изогнуты при достаточно малом радиусе закругления, что позволяет изготовлять из них ткань. Борные волокна могут использоваться для намотки изделий только большого диаметра или для получения изделий другими методами переработки, при которых они подвергаются минимальному изгибу.

Композиционные материалы на основе борных волокон и металлической матрицы

Рассмотренные выше особенности борных волокон явились причиной того, что их применяют главным образом в сочетании с металлическими, в частности алюминиевыми, матрицами. Композиционный материал алюминий — борные волокна формуют прессованием листов пре-прега при температуре выше 500 °С, как при получении металлокомпо-зитов на основе углеродных волокон. Композиционный материал алюминий — борные волокна можно применять при значительно больших температурах, чем композиционные материалы на основе полимерной матрицы. Прочность таких композитов сохраняется даже при температурах выше 400 °С. В последние годы разработаны новые типы полимерных связующих с высокой теплостойкостью. Однако армированные пластики на их основе, например углепластики, все-таки значительно уступают по теплостойкости композиционным материалам с металлической матрицей.
Борные волокна обладают высокой твердостью. Они имеют твердость по шкале Мооса 9,3 и уступают по твердости лишь алмазу. В изделиях из армированных волокнами пластмасс нет настоятельной необходимости применения борных волокон, стоимость которых больше чем на порядок превышает стоимость других волокон. Однако вследствие того, что пластмассы, армированные волокнами, обладают низкой стойкостью к образованию поверхностных трещин, боропластики с высокими значениями модуля упругости и твердости используют в качестве поверхностного слоя в гибридных материалах или конструкциях.
Элементарные борные волокна большого диаметра могут использоваться и самостоятельно в качестве некоторых изделий, например акустических консолей, штифтов, стержней точного размера и других.
Разнообразные композиционные материалы уже применяются в орбитальном космическом корабле многоразового использования «Спейс шаттл». Трубчатые элементы конструкции средней части корпуса этого космического корабля изготовлены из композиционного материала на основе алюминия и борных волокон. В настоящее время этот корабль, по-видимому, один из примеров наиболее рационального применения металлов, армированных волокнами.

Волокна из карбида кремния и композиционные материалы на их основе

Принципиальную схему технологии производства волокон из карбида кремния марки «Никалон» (фирма «Нихон карбон», Япония) разработал С. Коя (профессор Научно-исследовательского института металлических материалов Тохокского университета). Затем японские фирмы освоили промышленное производство этих волокон.

Свойства волокон из карбида кремния

Волокона из карбида кремния имеют следующие особенности по сравнению с углеродными волокнами:
1. Они могут работать в среде кислорода при высоких температурах (углеродные волокна в таких условиях начинают окисляться уже при температуре 400 ° С).
2.  Реакционная способность при взаимодействии с металлами низка, но смачивание поверхности волокон расплавами металлов довольно хорошее, поэтому производство композиционных материалов на основе металлической матрицы и волокон из карбида кремния с точки зрения технологии проще, чем производство металлокомпозитов на основе углеродных волокон.
3. В отличие от проводящих электрический ток углеродных волокон рассматриваемые волокна являются полупроводниками, и в определенных пределах их проводящие свойства можно регулировать.

Предполагаемые области применения волокон из карбида кремния

Так как эти волокна в кислородной среде при высоких температурах сохраняют высокие значения своих характеристик в большей степени, чем углеродные волокна, то их можно использовать не только для создания материалов, работающих в нормальных условиях, но и для получения материалов с повышенной теплостойкостью.
Армированные пластики на основе волокон из карбида кремния. При использовании в качестве армирующих материалов углеродных волокон на основе полиакрилонитрила их поверхность подвергают специальной обработке с целью повышения адгезии с полимерной матрицей. Для волокон из карбида кремния марки «Никалон» нет необходимости в такой обработке. Прочность при межслоевом сдвиге однонаправленных композиционных материалов на основе эпоксидной смолы и волокон «Никалон» составляет 120 МПа, т. е. того же порядка величины, что и для углепластиков. Ударная прочность при изгибе , приблизительно в два раза выше, чем у углепластиков.
Композиционные материалы на основе эпоксидной смолы и волокон из карбида кремния имеют также высокую износостойкость.
Одно из перспективных направлений применения волокон из карбида кремния — создание гибридных армированных пластиков на их основе в сочетании с углеродными волокнами; тем самым можно компенсировать некоторые недостатки углепластиков и получить материалы с ценным комплексом свойств. Такие материалы, по-видимому, можно будет применять для взлетно-посадочных устройств самолетов, изготовления лопастей вертолетов и других изделий, в том числе спортивных.
В отличие от углеродных волокон, обладающих электропроводящими свойствами и отражающих электрические волны, волокна из карбида кремния являются полупроводниками и в зависимости от условий термообработки степень пропускания или поглощения ими электромагнитных волн может изменяться; следовательно, в будущем можно ожидать применения армированных пластиков на основе волокон из карбида кремния в качестве материалов для различных радиоустройств, в частности в авиации.
Композиционные материалы на основе волокон из карбида кремния и металлической матрицы. Исследования в этой области в основном посвящены композиционным материалам с алюминиевой матрицей. Это связано с тем, что волокна из карбида кремния имеют близкую к алюминию плотность (2,55 г/см3), а также с тем, что температура плавления алюминия сравнительно низка. Сочетание этих компонентов позволяет получать композиционные материалы с весьма стабильными в широком температурном интервале свойствами. Была изучена зависимость от температуры прочности при растяжении однонаправленного материала на основе алюминия и волокон из карбида кремния, полученного методом пропитки волокон в расплаве:
1. При объемном содержании волокон 30% прочность при растяжении такого металлокомпозита приблизительно на 30% выше, чем у дюралюминия (прочность при изгибе на 80% выше прочности дюралюминия).
2. У алюминия, армированного волокнами из карбида кремния, прочность при растяжении снижается незначительно вплоть до температуры 400 °С; прочность дюралюминия заметно снижается с ростом температуры: при 150 °С — в три раза, а при 200 °С — в пять раз по сравнению с ее значением при комнатной температуре.
Исходя из рассмотренных выше свойств, можно ожидать, что алюминий, армированный волокнами из карбида кремния, найдет применение в качестве конструкционного материала в самолетостроении. Высокая теплостойкость этого композиционного материала позволяет использовать его для изготовления ряда деталей, которые в настоящее время изготавливаются из титана с плотностью 4,5 г/см3. Алюминий, армированный волокнами из карбида кремния, обладает высокими усталостными характеристиками при изгибе.
Неорганические композиционные материалы на основе волокон из карбида кремния. Согласно [14-16] , для армирования керамики более эффективны волокна из карбида кремния, чем углеродные волокна. Ниже рассмотрены примеры таких композиционных материалов.
Армирование нитрида кремния волокнами из карбида кремния. Полученный горячим прессованием композиционный материал SisN4 +  6 об. % коротких волокон из карбида кремния имеет прочность при растяжении вдоль армирующих волокон на 55% выше, а в поперечном направлении на 20% выше, чем чистый нитрид кремния.
Армирование стекол волокнами из карбида кремния. Многослойный композиционный материал на основе боросиликатного стекла и волокон из карбида кремния получают методом горячего прессования. По результатам исследования, он имеет хорошие свойства при высоких температурах. В интервале температур от комнатной до 700 °С наблюдается не снижение прочности, а значительное упрочнение материала [18] . Обращает на себя внимание максимум прочности при температуре приблизительно 600 °С. Исследования показали, что при использовании в качестве матрицы высококремнеземистого стекла (содержание SiO2 96%) или литиево-алюмосиликатного стекла, содержащего ZrO2 [20] , имеет место такой же эффект упрочнения, как в случае боросиликатного стекла. Максимальное значение прочности в первом случае наблюдается при температуре 1050 °С, во втором — при 1000 °С. Ударная вязкость по Шарпи (с надрезом) композиционного материала на основе литиево-алюмосиликатного стекла, содержащего ZrO2, более чем в 50 раз выше, чем у нитрида кремния, полученного горячим прессованием.
Другие материалы, армированные волокнами из карбида кремния. Промежуточным продуктом производства волокон из карбида кремния является поликарбосилан. Если пропитать им ткань, войлок или другой материал на основе волокон из карбида кремния и затем провести термическую обработку, то поликарбосилан превратится в карбид кремния. Можно предполагать, что, повторяя эту процедуру несколько раз, можно получить композиционный материал, матрицей в котором будет служить карбид кремния, армированный волокнами из карбида кремния. Такой метод лежит в основе многих новых перспективных технологических разработок.
Волокна, содержащие более 80 масс. % Al2 Оз, называют волокнами из оксида алюминия. Существуют два типа таких волокон: короткие и непрерывные. Короткие волокна наряду с оксидом алюминия содержат 5—20 масс. % оксида кремния, имеют диаметр около 3 мкм и длину порядка 1 см. Их прочность при растяжении составляет более 1 ГПа, а модуль упругости 200—400 ГПа. Короткие волокна из оксида алюминия используются главным образом в теплоизоляционных материалах при очень высоких температурах эксплуатации (1300-1600 °С) .
Непрерывные волокна из оксида алюминия имеют либо структуру шпинели (7-А12О3), либо структуру а-А12О3- Для армирования материалов могут использоваться оба указанных типа непрерывных волокон из оксида алюминия. Волокна из оксида алюминия со структурой шпинели изготавливают путем спекания в воздушной среде волокон, полученных прядением по «мокрому» методу из раствора, содержащего полимер алюминийорганического соединения и кремнийорганическое соединение. Такие волокна состоят из микрокристаллов размером порядка 10 нм, сохраняют стабильную структуру до высоких температур и содержат около 15 масс. % оксида кремния. Волокна из а-А12Оз также изготовляют спеканием в воздушной среде волокон, полученных прядением из суспензии мелкодисперсного порошка а-А12О3 в основном хлориде алюминия. Агломераты частиц имеют размер 0,5 мкм. Достоинствами этих двух типов армирующих волокон из оксида алюминия по сравнению с углеродными волокнами являются электроизоляционные свойства, бесцветность, стабильность свойств на воздухе при высоких температурах и при контакте с расплавленными металлами. Их недостаток — сравнительно высокая плотность. Различие структуры указанных двух типов непрерывных волокон из оксида алюминия приводит к различию их физических свойств. Волокна со структурой шпинели имеют большую прочность и поддаются текстильной переработке для получения ткани и т. д. Эти волокна имеют меньшую плотность, чем волокна из a-Al2Оз. С другой стороны, волокна из а-А12О3 имеют более высокий модуль упругости. Различия этих двух типов волокон подобны различиям между двумя типами углеродных волокон: карбонизованными и графитизированными.

Композиционные материалы на основе волокон из оксида алюминия и металлической матрицы

Волокна из оксида алюминия успешно применяются для армирования металлов. Были проведены  физико-механические исследования композиционных материалов на основе волокон из оксида алюминия и алюминиевой матрицы. По результатам исследований, такие композиционные материалы обладают хорошими механическими свойствами при высоких температурах, высокой электропроводностью и т. д. По сравнению с металлами, армированными другими волокнами, металлокомпозиты на основе волокон из оксида алюминия имеют следующие особенности. Во-первых, так как волокна из оксида алюминия стабильны при высоких температурах в воздушной среде и практически не реагируют с расплавленным металлом, металлокомпозиты на их основе можно получать методом литья. Это дает возможность формовать изделия сложной формы, с толстыми стенками, а также изделия, только часть которых армируется волокнами. Во-вторых, при температурах, близких даже к температуре плавления металлической матрицы, рассматриваемые композиционные материалы в значительной мере сохраняют свои свойства. Это позволяет применять материалы в течение длительного времени при высоких температурах, прессовать, вальцевать или проводить их повторное формование в изделия при температурах, близких к температуре плавления металлической матрицы. Дополнительная термообработка материалов также является средством регулирования их физико-механических свойств. Электроизоляционные свойства волокон из оксида алюминия препятствуют электролитической коррозии материалов, полученных на их основе.
Металлокомпозиты, армированные волокнами из оксида алюминия, в основном получают литьевыми методами. Так как волокна из оксида алюминия плохо смачиваются расплавами металлов, то для проникновения расплавленного металла в межволоконное пространство его вводят в литейную форму вместе с волокнами под давлением; для улучшения смачиваемости иногда добавляют литий.

49723 всего просмотров, 0 просмотров за сегодня

Комментарии к записи Горячее прессование поликарбоната отключены

Горячее прессование поликарбоната

| Поликарбонаты | 17.11.2008

Горячее прессование. Плиты и пленки из поликарбоната вследствие эластичности и высокой термостойкости можно применять для горячего прессования и получать тонкостенные изделия.
Стоимость изделий, получаемых этим методом, примерно в 2 раза выше стоимости изделий, изготовленных литьем под давлением.

Читать далее »

7586 всего просмотров, 0 просмотров за сегодня

Страница 16 из 219 1 14 15 16 17 18 219

ТОП: «Объявление дня»

  • No ads viewed yet.