About admin

  • На сайте с: 21.11.2015

Текст объявления

Ads / Latest items listed
vczxmmnb
Поликарбонат с матовой поверхностью

Монолитный поликарбонат с поверхностью антиблик - матированная поверхность получается методом химического вытравливания или каландрирования. Данная поверхность ...

349 всего просмотров, 0 просмотров за сегодня

 

 

czbvn
Поликарбонат с противоконденсатным покрытием

Листы поликарбоната с противоконденсатным покрытием широко применяются в следующих случаях: внутри остекленного поликарбонатом помещения высокая влажность (...

297 всего просмотров, 0 просмотров за сегодня

 

 

xbbnfmn
Светотехнический поликарбонат для освещения (100% светорассеивание)

Листы монолитного поликарбоната светотехнического назначения предназначаются для создания рассеивающих поверхностей в светильниках и других осветительных элемен...

389 всего просмотров, 0 просмотров за сегодня

 

 

bcnmz
Антиабразивный (нецарапающийся) поликарбонат

Антиабразивный поликарбонат или как говорят нецарапающийся монолитный поликарбонат - высокотехнологичный материал на базе обычных листов монолитного поликарбона...

1258 всего просмотров, 3 просмотров за сегодня

 

 

31290ddfgg
Антистатический поликарбонат

Антистатический поликарбонат – это поликарбонатный лист с нанесённым поверх основного материала дополнительным защитным слоем, обладающим антистатическим эффект...

745 всего просмотров, 1 просмотров за сегодня

 

 

it-Antifog
Незапотевающий монолитный поликарбонат(Антифог)

Поликарбонатные листы с защитой от запотевания (поликарбонат антифог) с покрытием с одной стороны, а также возможно покрытие с двух сторон. Свойства монолитн...

434 всего просмотров, 2 просмотров за сегодня

 

 

fire_safety2
Негорючие листы поликарбоната

Данный материал отличается высокими показателями пожароустойчивости. Они не только не подвергаются разрушительному воздействию огня, но устойчивы к различным ви...

748 всего просмотров, 1 просмотров за сегодня

 

 

vfgnm
Двухцветные листы сотового поликарбоната

Двухцветные листы сотового поликарбоната имеют в своей производственно карте многие производители, однако, пока они не получили широкого распространения. Мы пре...

324 всего просмотров, 0 просмотров за сегодня

 

 

pogh587
Прозрачные трубы из поликарбоната

Основные параметры и свойства поликарбонатных труб: доступные диаметры труб: 25мм, 30мм, 32мм, 37,5мм, 38мм, 50мм, 54мм, 110мм. стандартная длина трубы из...

2008 всего просмотров, 3 просмотров за сегодня

 

 

09989p
Блочный поликарбонат толщиной: 15, 20, 25, 30, 40, 50 мм

Блочный поликарбонат — это поликарбонат особых больших толщин, позволяющий с помощью резки изготавливать детали особой прочности. Блочный поликарбонат сохраняет...

829 всего просмотров, 2 просмотров за сегодня

 

 

Страница 14 из 18 1 12 13 14 15 16 18
Posts / Recent blog posts
Комментарии к записи Обработка каучука и производство резины отключены

Обработка каучука и производство резины

| ИНФОРМАЦИЯ ПО ТЕМЕ | 22.11.2008

Пластикация

Одно из важнейших свойств каучука – пластичность – используется в производстве резиновых изделий. Чтобы смешать каучук с другими ингредиентами резиновой смеси, его нужно сначала умягчить, или пластицировать, путем механической или термической обработки. Этот процесс называется пластикацией каучука. Открытие Т.Хэнкоком в 1820 возможности пластикации каучука имело огромное значение для резиновой промышленности. Его пластикатор состоял из шипованного ротора, вращающегося в шипованном полом цилиндре; это устройство имело ручной привод. В современной резиновой промышленности используются три типа подобных машин до ввода других компонентов резиновой смеси в каучук. Это – каучукотерка, смеситель Бенбери и пластикатор Гордона.

Использование грануляторов – машин, которые разрезают каучук на маленькие гранулы или пластинки одинаковых размеров и формы, – облегчает операции по дозировке и управлению процессом обработки каучука. каучук подается в гранулятор по выходе из пластикатора. Получающиеся гранулы смешиваются с углеродной сажей и маслами в смесителе Бенбери, образуя маточную смесь, которая также гранулируется. После обработки в смесителе Бенбери производится смешивание с вулканизующими веществами, серой и ускорителями вулканизации.

Приготовление резиновой смеси

Химическое соединение только из каучука и серы имело бы ограниченное практическое применение. Чтобы улучшить физические свойства каучука и сделать его более пригодным для эксплуатации в различных применениях, необходимо модифицировать его свойства путем добавления других веществ. Все вещества, смешиваемые с каучуком перед вулканизацией, включая серу, называются ингредиентами резиновой смеси. Они вызывают как химические, так и физические изменения в каучуке. Их назначение – модифицировать твердость, прочность и ударную вязкость и увеличить стойкость к истиранию, маслам, кислороду, химическим растворителям, теплу и растрескиванию. Для изготовления резин разных применений используются различные составы.
Ускорители и активаторы. Некоторые химически активные вещества, называемые ускорителями, при использовании вместе с серой уменьшают время вулканизации и улучшают физические свойства каучука. Примерами неорганических ускорителей являются свинцовые белила, свинцовый глет (монооксид свинца), известь и магнезия (оксид магния). Органические ускорители гораздо более активны и являются важной частью почти любой резиновой смеси. Они вводятся в смесь в относительно малой доле: обычно бывает достаточно от 0,5 до 1,0 части на 100 частей каучука. Большинство ускорителей полностью проявляет свою эффективность в присутствии активаторов, таких, как окись цинка, а для некоторых требуется органическая кислота, например стеариновая. Поэтому современные рецептуры резиновых смесей обычно включают окись цинка и стеариновую кислоту.

Мягчители и пластификаторы

Мягчители и пластификаторы обычно используются для сокращения времени приготовления резиновой смеси и понижения температуры процесса. Они также способствуют диспергированию ингредиентов смеси, вызывая набухание или растворение каучука. Типичными мягчителями являются парафиновое и растительные масла, воски, олеиновая и стеариновая кислоты, хвойная смола, каменноугольная смола и канифоль.
Упрочняющие наполнители. Некоторые вещества усиливают каучук, придавая ему прочность и сопротивляемость износу. Они называются упрочняющими наполнителями. Углеродная (газовая) сажа в тонко измельченной форме – наиболее распространенный упрочняющий наполнитель; она относительно дешева и является одним из самых эффективных веществ такого рода. Протекторная резина автомобильной шины содержит приблизительно 45 частей углеродной сажи на 100 частей каучука.
Другими широко используемыми упрочняющими наполнителями являются окись цинка, карбонат магния, кремнезем, карбонат кальция и некоторые глины, однако все они менее эффективны, чем газовая сажа.

Наполнители

На заре каучуковой промышленности еще до появления автомобиля некоторые вещества добавлялись к каучуку для удешевления получаемых из него продуктов. Упрочнение еще не имело большого значения, и такие вещества просто служили для увеличения объема и массы резины. Их называют наполнителями или инертными ингредиентами резиновой смеси. Распространенными наполнителями являются бариты, мел, некоторые глины и диатомит.

Антиоксиданты

Использование антиоксидантов для сохранения нужных свойств резиновых изделий в процессе их старения и эксплуатации началось после Второй мировой войны. Как и ускорители вулканизации, антиоксиданты – сложные органические соединения, которые при концентрации 1–2 части на 100 частей каучука препятствуют росту жесткости и хрупкости резины. Воздействие воздуха, озона, тепла и света – основная причина старения резины. Некоторые антиоксиданты также защищают резину от повреждения при изгибе и нагреве.

Пигменты

Упрочняющие и инертные наполнители и другие ингредиенты резиновой смеси часто называют пигментами, хотя используются и настоящие пигменты, которые придают цвет резиновым изделиям. Оксиды цинка и титана, сульфид цинка и литопон применяются в качестве белых пигментов. Желтый крон, железоокисный пигмент, сульфид сурьмы, ультрамарин и ламповая сажа используются для придания изделиям различных цветовых оттенков.

Каландрование

После того как сырой каучук пластицирован и смешан с ингредиентами резиновой смеси, он подвергается дальнейшей обработке перед вулканизацией, чтобы придать ему форму конечного изделия. Тип обработки зависит от области применения резинового изделия. На этой стадии процесса широко используются каландрование и экструзия.
Каландры представляют собой машины, предназначенные для раскатки резиновой смеси в листы или промазки ею тканей. Стандартный каландр обычно состоит из трех горизонтальных валов, расположенных один над другим, хотя для некоторых видов работ используются четырехвальные и пятивальные каландры. Полые каландровые валы имеют длину до 2,5 м и диаметр до 0,8 м. К валам подводятся пар и холодная вода, чтобы контролировать температуру, выбор и поддержание которой имеют решающее значение для получения качественного изделия с постоянной толщиной и гладкой поверхностью. Соседние валы вращаются в противоположных направлениях, причем частота вращения каждого вала и расстояние между валами точно контролируются. На каландре выполняются нанесение покрытия на ткани, промазка тканей и раскатка резиновой смеси в листы.

Экструзия

Экструдер применяется для формования труб, шлангов, протекторов шин, камер пневматических шин, уплотнительных прокладок для автомобилей и других изделий. Он состоит из стального цилиндрического корпуса, снабженного рубашкой для нагрева или охлаждения. Плотно прилегающий к корпусу шнек подает невулканизованную резиновую смесь, предварительно нагретую на вальцах, через корпус к головке, в которую вставляется сменный формующий инструмент, определяющий форму получаемого изделия. Выходящее из головки изделие обычно охлаждается струей воды. Камеры пневматических шин выходят из экструдера в виде непрерывной трубки, которая потом разрезается на части нужной длины. Многие изделия, например уплотнительные прокладки и небольшие трубки, выходят из экструдера в окончательной форме, а потом вулканизуются. Другие изделия, например протекторы шин, выходят из экструдера в виде прямых заготовок, которые впоследствии накладываются на корпус шины и привулканизовываются к нему, меняя свою первоначальную форму.

Вулканизация

Далее необходимо вулканизовать заготовку, чтобы получить готовое изделие, пригодное к эксплуатации. Вулканизация проводится несколькими способами. Многим изделиям придается окончательная форма только на стадии вулканизации, когда заключенная в металлические формы резиновая смесь подвергается воздействию температуры и давления. Автомобильные шины после сборки на барабане формуются до нужного размера и затем вулканизуются в рифленых стальных формах. Формы устанавливаются одна на другую в вертикальном вулканизационном автоклаве, и в замкнутый нагреватель запускается пар. В невулканизованную заготовку шины вставляется пневмомешок той же формы, что и камера шины. По гибким медным трубкам в него запускаются воздух, пар, горячая вода по отдельности или в сочетании друг с другом; эти служащие для передачи давления текучие среды раздвигают каркас шины, заставляя каучук втекать в фасонные углубления формы. В современной практике технологи стремятся к увеличению числа шин, вулканизуемых в отдельных вулканизаторах, называемых пресс-формами. Эти литые пресс-формы имеют полые стенки, обеспечивающие внутреннюю циркуляцию пара, горячей воды и воздуха, которые подводят тепло к заготовке. В заданное время пресс-формы автоматически открываются.
Были разработаны автоматизированные вулканизационные прессы, которые вставляют в заготовку шины варочную камеру, вулканизуют шину и удаляют варочную камеру из готовой шины. Варочная камера является составной частью вулканизационного пресса. Камеры шин вулканизуются в сходных пресс-формах, имеющих гладкую поверхность. Среднее время вулканизации одной камеры составляет около 7 мин при 155? С. При меньших температурах время вулканизации возрастает.
Многие изделия меньшего размера вулканизуются в металлических пресс-формах, которые размещаются между параллельными плитами гидравлического пресса. Плиты пресса внутри полые, чтобы обеспечить доступ пара для нагрева без непосредственного контакта с изделием. Изделие получает тепло только через металлическую пресс-форму.
Многие изделия вулканизуются нагревом в воздухе или углекислом газе. Прорезиненная ткань, одежда, плащи и резиновая обувь вулканизуются таким способом. Процесс обычно проводится в больших горизонтальных вулканизаторах с паровой рубашкой. Резиновые смеси, вулканизуемые сухим теплом, обычно содержат меньшую добавку серы, чтобы исключить выход части серы на поверхность изделия. Для уменьшения времени вулканизации, которое, как правило, больше, чем при вулканизации открытым паром или под прессом, используются вещества-ускорители.
Некоторые резиновые изделия вулканизуются погружением в горячую воду под давлением. Листовой каучук наматывается между слоями муслина на барабан и вулканизуется в горячей воде под давлением. Резиновые груши, шланги, изоляция для проводов вулканизуются в открытом паре. Вулканизаторы обычно представляют собой горизонтальные цилиндры с плотно подогнанными крышками. Пожарные шланги вулканизуются паром с внутренней стороны и таким образом играют роль собственных вулканизаторов. Каучуковый шланг втягивается вовнутрь плетеного хлопчатобумажного шланга, к ним прикрепляются соединительные фланцы и внутрь заготовки на заданное время под давлением нагнетается пар.
Вулканизация без подвода тепла может проводиться с помощью хлористой серы S2Cl2 путем либо погружения в раствор, либо воздействия паров. Только тонкие листы или такие изделия, как фартуки, купальные шапочки, напальчники или хирургические перчатки, вулканизуются таким способом, поскольку реакция протекает быстро, а раствор при этом не проникает глубоко в заготовку. Дополнительная обработка аммиаком необходима для удаления кислоты, образующейся в процессе вулканизации.

ТВЕРДАЯ РЕЗИНА

Изделия из твердой резины отличаются от изделий из мягкой резины главным образом количеством серы, используемой при вулканизации. Когда количество серы в резиновой смеси превышает 5%, в результате вулканизации получается твердая резина. Резиновая смесь может содержать до 47 частей серы на 100 частей каучука; при этом получается твердый и жесткий продукт, называемый эбонитом, поскольку похож на эбеновое (черное) дерево. Изделия из твердой резины обладают хорошими диэлектрическими свойствами и используются в электротехнической промышленности в качестве изоляторов, например в распределительных щитах, вилках, розетках, телефонах и аккумуляторах. Изготовленные с применением твердой резины трубы, клапаны и арматура применяются в тех областях химической промышленности, где требуется коррозионная стойкость. Изготовление детских игрушек – еще одна статья потребления твердой резины.

СИНТЕТИЧЕСКИЙ КАУЧУК

Синтез каучука, происходящий в дереве, никогда не выполнялся в лаборатории. Синтетические каучуки являются эластичными материалами; они сходны с натуральным продуктом по химическим и физическим свойствам, но отличаются от него структурой.
Синтез аналога натурального каучука (1,4-цис-полиизопрена и 1,4-цис-полибутадиена). Натуральный каучук, получаемый из гевеи бразильской, имеет структуру, состоящую на 97,8% из 1,4-цис-полиизопрена.

Синтез 1,4-цис-полиизопрена проводился несколькими различными путями с использованием регулирующих стереоструктуру катализаторов, и это позволило наладить производство различных синтетических эластомеров. Катализатор Циглера состоит из триэтилалюминия и четыреххлористого титана; он заставляет молекулы изопрена объединяться (полимеризоваться) с образованием гигантских молекул 1,4-цис-полиизопрена (полимера). Аналогично, металлический литий или алкил- и алкиленлитиевые соединения, например бутиллитий, служат катализаторами полимеризации изопрена в 1,4-цис-полиизопрен. Реакции полимеризации с этими катализаторами проводятся в растворе с использованием углеводородов нефти в качестве растворителей. Синтетический 1,4-цис-полиизопрен обладает свойствами натурального каучука и может использоваться как его заместитель в производстве резиновых изделий.
Полибутадиен, на 90–95% состоящий из 1,4-цис-изомера, также был синтезирован посредством регулирующих стереоструктуру катализаторов Циглера, например триэтилалюминия и четырехиодистого титана. Другие регулирующие стереоструктуру катализаторы, например хлорид кобальта и алкилалюминий, также дают полибутадиен с высоким (95%) содержанием 1,4-цис-изомера. Бутиллитий тоже способен полимеризовать бутадиен, однако дает полибутадиен с меньшим (35–40%) содержанием 1,4-цис-изомера. 1,4-цис-полибутадиен обладает чрезвычайно высокой эластичностью и может использоваться как наполнитель натурального каучука.
Тиокол (полисульфидный каучук). В 1920, пытаясь получить новый антифриз из этиленхлорида и полисульфида натрия, Дж.Патрик вместо этого открыл новое каучукоподобное вещество, названное им тиоколом. Тиокол высокоустойчив к бензину и ароматическим растворителям. Он имеет хорошие характеристики старения, высокое сопротивление раздиру и низкую проницаемость для газов. Не будучи настоящим синтетическим каучуком, он, тем не менее, находит применение для изготовления резин специального назначения.
Неопрен (полихлоропрен). В 1931 компания «Дюпон» объявила о создании каучукоподобного полимера, или эластомера, названного неопреном. Неопрен изготавливают из ацетилена, который, в свою очередь, получают из угля, известняка и воды. Ацетилен сначала полимеризуют до винилацетилена, из которого путем добавления хлороводородной кислоты производят хлоропрен. Далее хлоропрен полимеризуют до неопрена. Помимо маслостойкости неопрен имеет высокую тепло- и химическую стойкость и используется в производстве шлангов, труб, перчаток, а также деталей машин, например шестерен, прокладок и приводных ремней.
Буна S (SBR, бутадиенстирольный каучук). Синтетический каучук типа буна S, обозначаемый как SBR, производится в больших реакторах с рубашкой, или автоклавах, в которые загружают бутадиен, стирол, мыло, воду, катализатор (персульфат калия) и регулятор роста цепи (меркаптан). Мыло и вода служат для эмульгирования бутадиена и стирола и приведения их в близкий контакт с катализатором и регулятором роста цепи. Содержимое реактора нагревается до примерно 50° С и перемешивается в течение 12–14 ч; за это время в результате процесса полимеризации в реакторе образуется каучук. Получающийся латекс содержит каучук в форме малых частиц и имеет вид молока, очень напоминающий натуральный латекс, добытый из дерева.
Латекс из реакторов обрабатывается прерывателем полимеризации для остановки реакции и антиоксидантом для сохранения каучука. Затем он очищается от избытка бутадиена и стирола. Чтобы отделить (путем коагуляции) каучук от латекса, он обрабатывается раствором хлорида натрия (пищевой соли) в кислоте либо раствором сульфата алюминия, которые отделяют каучук в форме мелкой крошки. Далее крошка промывается, сушится в печи и прессуется в кипы.
Из всех эластомеров SBR используется наиболее широко. Больше всего его идет на производство автомобильных шин. Этот эластомер сходен по свойствам с натуральным каучуком. Он не маслостоек и в большинстве случаев проявляет низкую химическую стойкость, но обладает высоким сопротивлением удару и истиранию.
Латексы для эмульсионных красок. Бутадиен-стирольные латексы широко используются в эмульсионных красках, в которых латекс образует смесь с пигментами обычных красок. В таком применении содержание стирола в латексе должно превышать 60%.
Низкотемпературный маслонаполненный каучук. Низкотемпературный каучук – особый тип каучука SBR. Он производится при 5° С и обеспечивает лучшую износостойкость шин, чем стандартный SBR, полученный при 50° С. Износостойкость шин еще более повышается, если низкотемпературному каучуку придать высокую ударную вязкость. Для этого в базовый латекс добавляют некоторые нефтяные масла, называемые нефтяными мягчителями. Количество добавляемого масла зависит от требуемого значения ударной вязкости: чем оно выше, тем больше вводится масла. Добавленное масло действует как мягчитель жесткого каучука. Другие свойства маслонаполненного низкотемпературного каучука такие же, как у обычного низкотемпературного.
Буна N (NBR, бутадиенакрилонитрильный каучук). Вместе с буна S в Германии был также разработан маслостойкий тип синтетического каучука под названием пербунан, или буна N. Основной компонент этого нитрильного каучука – также бутадиен, который сополимеризуется с акрилонитрилом по существу по тому же механизму, что и SBR. Сорта NBR различаются содержанием акрилонитрила, количество которого в полимере варьирует от 15 до 40% в зависимости от назначения каучука. Нитрильные каучуки маслостойки в степени, соответствующей содержанию в них акрилонитрила. NBR использовался в тех видах военного оборудования, где требовалась маслостойкость, например в шлангах, самоуплотняющихся топливных элементах и конструкциях транспортных средств. Бутилкаучук. Бутилкаучук – еще один синтетический каучук – был открыт в 1940. Он замечателен своей низкой газопроницаемостью; камера шины из этого материала удерживает воздух в 10 раз дольше, чем камера из натурального каучука. Бутилкаучук изготавливают полимеризацией изобутилена, получаемого из нефти, с малой добавкой изопрена при температуре 100° С. Эта полимеризация не является эмульсионным процессом, а проводится в органическом растворителе, например метилхлориде. Свойства бутилкаучука могут быть сильно улучшены термообработкой маточной смеси бутилкаучука и газовой сажи при температуре от 150 до 230 С. Недавно бутилкаучук нашел новое применение как материал для протекторов шин ввиду его хороших ходовых характеристик, отсутствия шума и превосходного сцепления с дорогой. Бутилкаучук несовместим с натуральным каучуком и SBR и, значит, не может быть смешан с ними. Однако после хлорирования до хлорбутилкаучука он становится совместимым с натуральным каучуком и SBR. Хлорбутилкаучук сохраняет низкую газопроницаемость. Это свойство используется при изготовлении смешанных продуктов хлорбутилкаучука с натуральным каучуком или SBR, которые служат для производства внутреннего слоя бескамерных шин.
Этиленпропиленовый каучук. Сополимеры этилена и пропилена могут быть получены в широких диапазонах составов и молекулярных масс. Эластомеры, содержащие 60–70% этилена, вулканизуются с пероксидами и дают вулканизат с хорошими свойствами. Этиленпропиленовый каучук имеет превосходную атмосферо- и озоностойкость, высокую термо-, масло- и износостойкость, но также и высокую воздухопроницаемость. Такой каучук изготавливается из дешевых сырьевых материалов и находит многочисленные применения в промышленности.
Наиболее широко применяемым типом этиленпропиленового каучука является тройной этиленпропиленовый каучук (с диеновым сомономером). Он используется в основном для изготовления оболочек проводов и кабелей, однослойной кровли и в качестве присадки для смазочных масел. Его малая плотность и превосходная озоно- и атмосферостойкость обусловливают его применение в качестве кровельного материала.
Вистанекс. Вистанекс, или полиизобутилен, – полимер изобутилена, также получаемый при низких температурах. Он подобен каучуку по свойствам, но в отличие от каучука является насыщенным углеводородом и, значит, не может быть подвергнут вулканизации. Полиизобутилен озоностоек.
Коросил. Коросил, каучукоподобный материал, – это пластифицированный поливинилхлорид, приготовленный из винилхлорида, который, в свою очередь, получают из ацетилена и хлороводородной кислоты. Коросил замечательно стоек к действию окислителей, в том числе озона, азотной и хромовой кислот, и поэтому используется для внутренней облицовки цистерн с целью защиты их от коррозии. Он непроницаем для воды, масел и газов и в силу этого находит применение как покрытие для тканей и бумаги. Каландрованный материал используется в производстве плащей, душевых занавесок и обоев. Низкое водопоглощение, высокая электрическая прочность, негорючесть и высокое сопротивление старению делают пластифицированный поливинилхлорид пригодным для изготовления изоляции проводов и кабелей.
Полиуретан. Класс эластомеров, известных как полиуретаны, находит применение в производстве пеноматериалов, клеев, покрытий и формованных изделий. Изготовление полиуретанов включает несколько стадий. Сначала получают сложный полиэфир реакцией дикарбоновой кислоты, например адипиновой, с многоатомным спиртом, в частности этиленгликолем или диэтиленгликолем. Полиэфир обрабатывают диизоцианатом, например толуилен-2,4-диизоцианатом или метилендифенилендиизоцианатом. Продукт этой реакции обрабатывают водой и подходящим катализатором, в частности n-этилморфолином, и получают упругий или гибкий пенополиуретан. Добавляя диизоцианат, получают формованные изделия, в том числе шины. Меняя соотношение гликоля и дикарбоновой кислоты в процессе производства сложного полиэфира, можно изготовить полиуретаны, которые используются как клеи или перерабатываются в твердые или гибкие пеноматериалы либо формованные изделия. Пенополиуретаны огнестойки, имеют высокую прочность на растяжение, очень высокое сопротивление раздиру и истиранию. Они проявляют исключительно высокую несущую способность и хорошее сопротивление старению. Вулканизованные полиуретановые каучуки имеют высокие прочность на растяжение, сопротивление истиранию, раздиру и старению. Был разработан процесс получения полиуретанового каучука на основе простого полиэфира. Такой каучук хорошо ведет себя при низких температурах и устойчив к старению.
Кремнийорганический каучук. Кремнийорганические каучуки не имеют себе равных по пригодности к эксплуатации в широком температурном интервале (от ?73 до 315° С). Для вулканизованных кремнийорганических каучуков была достигнута прочность на растяжение около 14 МПа. Их сопротивление старению и диэлектрические характеристики также весьма высоки.

Хайпалон (хлорсульфоэтиленовый каучук)

Этот эластомер хлорсульфонированного полиэтилена получают обработкой полиэтилена хлором и двуокисью серы. Вулканизованный хайпалон чрезвычайно озоно- и атмосферостоек и имеет хорошую термо- и химическую стойкость.
Фторсодержащие эластомеры. Эластомер кель-F – сополимер хлортрифторэтилена и винилиденфторида. Этот каучук имеет хорошую термо- и маслостойкость. Он стоек к действию коррозионно-активных веществ, негорюч и пригоден к эксплуатации в интервале от ?26 до 200° С. Витон А и флюорел – сополимеры гексафторпропилена и винилиденфторида. Эти эластомеры отличаются превосходной стойкостью к действию тепла, кислорода, озона, атмосферных факторов и солнечного света. Они имеют удовлетворительные низкотемпературные характеристики и пригодны к эксплуатации до ?21° С. Фторсодержащие эластомеры используются в тех приложениях, где требуется стойкость к действию тепла и масел.
Специализированные эластомеры. Производятся специализированные эластомеры с разнообразными физическими свойствами. Многие из них очень дороги. Наиболее важные из них – акрилатные каучуки, хлорсульфонированный полиэтилен, сополимеры простых и сложных эфиров, полимеры на основе эпихлоргидрина, фторированные полимеры и термопластичные блок-сополимеры. Они используются для изготовления уплотнений, прокладок, шлангов, оболочек проводов и кабелей и клеев.

16153 всего просмотров, 3 просмотров за сегодня

Комментарии к записи Пластмассы отключены

Пластмассы

| ИНФОРМАЦИЯ ПО ТЕМЕ | 21.11.2008

Одним их самых распространенных искусственных, отсутствующих в природе и потому получаемых в процессе химической обработки, материалов являются полимеры, пластмассы, появление которых относится к 20 веку, веку бурного развития новых технологий. Их распространенность, применение обусловлено рядом  их специфических свойств, таких как малая плотность при удовлетворительной технологической прочности, высокая химическая коррозионная стойкость, хорошие электроизоляционные свойства и прочее.
Их широкое применение в машиностроении, промышленности позволяет экономить расход дорогих цветных металлов, снижать массу изделий, повышать их долговечность, снизить трудоемкость продукции. Одним из преимуществ является также возможность не разделения процессов изготовления продукции путем совмещения процессов формообразования заготовки и получения готовых деталей. Процесс обработки является высоко автоматизированным, с незначительным уровнем механической доработки.

Пластмассы, их классификация и физические свойства

Пластмассы представляют собой материалы, сложную композицию высокомолекулярных соединений, которые могут находится в аморфном и кристаллической состоянии. Иным словами, на языке науки, эти материалы представляют собой группу органических материалов, основу которых составляют синтетические или природные смолообразные высокомолекулярные вещества (полимеры), способные при нагревании и давлении формоваться, устойчиво сохраняя приданную им форму.




Средняя плотность пластмасс от 15 до 2200 кг/м3. Они обладают значительной прочностью (предел прочности при сжатии 120…160 МПа, при изгибе 40…60 МПа), хорошими теплоизоляционнымии электроизоляционными качествами, коррозийной стойкостью и долговечностью. Отдельные пластмассы характеризуются прозрачностью и высокой клеящей способностью, а также способностью образовывать тонкие пленки и защитные покрытия. Пластмассы имеют исключительно важное значение как строительные материалы, частоприменяемые в комбинации с вяжущими веществами, металлами каменными материалами1.
В зависимости от степени влияния теплоты эти вещества могут быть классифицированы на следующие группы: термопласты – полиэтиленовые, капроновые, полистирольные, фторопластмассы —  и реактопласты — различные текстолиты, пресс материалы, стеклопластики. При нагревании исходных компонентов переходит в вязко-текучее состояние, но с завершением хим. реакции становится твердым и больше не могут размягчатся ( в отличие от термопластов).
По своим физическим свойствам эти материалы могут быть также подразделены на: жесткие – имеющие  незначительное удлинение, называются пластиками, мягкие — обладающие большим относительным удлинением, низкой упругостью наз. эластики.
Кроме того, в  зависимости от числа компонентов теория и практика химической промышленности выделяет: простые, композиционные (3-4 и 10 компонентов)

Технология изготовления пластмасс

Пластмассы изготовляют из связующего вещества-полимера2, наполнителя, пластификатора и ускорителя отверждения. При изготовлении цветных пластмасс в их состав вводят минеральные красители. При изготовлении пластмасс в качестве связующих веществ используют синтетические смолы, синтетические каучуки и производные целлюлозы, относящиеся к высокомолекулярным соединениям полимерам.

Способы переработки пластмасс подразделяют на группы:

— в вязком текущем состоянии: прессованием, давлением, выдавливанием.
— в высокоэластичном состоянии: штамповка, пневмо — и вакуум-формовка.

Получение пластмассовых деталей из жидких полимеров

Переработка пластмасс в твердом состоянии состоит из следующих этапов: резка, механическая обработка. Получение неразъемных соединений: сварка, пайка, склеивание.
К прочим способам можно отнести: напыление, спекание и др.

Прессование – производство выполняется в металлических пресс-формах с одной или несколькими формовыми полостями — матрицами. В них пластмасса подается в исходном состоянии в виде порошков, таблеток. Под воздействием тепла и давления пресс-материал заполняет формирующие полости, приобретая требуемую форму и размер, здесь же протекает процесс полимеризации.

Пресс-форма Арматура. Недостатком является достаточно быстрый износ пресс-форм, т. к. прессование начинается при недостаточно пластичном материале.
Литьевое прессование начальные этапы проводятся в отдельном устройстве – предварительная камера. повышается стойкость пресс-формы, точность и качество деталей, т. к. заполнение идет только в жидком состоянии.  Но усложняется конструкция.
Литьевое под давлением (наиболее эффективный метод). Применяется для термопластичных материалов. Повышенная производительность до нескольких сот деталей в минуту. Возможна полная автоматизация циклов, на машинах получают детали очень сложной формы.  Процесс литья заключается в том, что расплавленный материал подается в рабочую полость стальной пресс-формы под давлением 300-500 МПа. Весь процесс осуществляется на одной машине, которая работает в автоматическом или полуавтоматическом режиме. Это наиболее известная форма литья. металл подогрев
Одна часть формы подвижная. Металл подается в специальный мундштук из цилиндра. Чтобы металл не остывал камера сжатия подогревается постоянно.
Экструзия — пластмассу заставляют течь через фасонное отверстие – фильеру.
Формование — тонкий лист пластмассы укладывается на металлические пресс-формы. Воздух откачивается. Формирование происходит под действием атмосферного давления; применяют для получения крупногабаритных и корпусных деталей.
Наполнителями при изготовлении пластмасс служат различные минеральные (кварцевая мука, мел, барит, тальк) и органические (древесная мука) порошки, асбестовые, древесные и стеклянные волокна, бумага, хлопчатобумажная и стеклянная ткани, асбестовый картон, древесный шпон и др. Наполнители снижают стоимость изделий, а также улучшают отдельные их свойства, например повышают прочность, твердость, теплостойкость, кислотостойкость, снижают хрупкость, увеличивают долговечность. Пластификаторы (цинковая кислота, стеарат алюминия и др.) придают пластмассе большую пластичность. Они должны быть химически инертными, малолетучими и нетоксичными. Катализаторы применяют для ускорения отверждения пластмасс. Например, для ускорения отверждения фенолоформальдегидного полимера ускорителем служит известь или уротропин.
Например, ученым из Калифорнийского университета удалось создать в лабораторных условиях вещество, которое, как считалось ранее, существует только в межзвездном пространстве и крайне нестабильно, сообщает CNews.ru со ссылкой на ScienceDaily. Новое вещество принадлежит к известному классу веществ — карбенам, большинство из которых нестабильны. Тем не менее, карбены в настоящее время широко используются для изготовления катализаторов, которые применяются в фармацевтике, нефтехимии и при изготовлении пластмасс. Циклопропенилидин, который в естественном виде содержится в космическом пространстве, содержит три атома углерода, расположенные треугольником, и два атома водорода. Ученые синтезировали более стабильную форму, заменив водород двумя атомами азота. Предполагается, что новое вещество будет использоваться для создания еще более мощных катализаторов. Новые модифицированные методы производства полимеров, предложенных по результатам лабораторных экспериментов, могут улучшить процесс получения полимерной цепи из отдельных молекул мономера при одновременном уменьшении технологических потерь.
В настоящее время полимеры получают посредством проведения процесса свободно-радикальной полимеризации. Изменением условий процесса можно получать полимеры с разными свойствами. Например, изменение технологических параметров и добавлением разных сомономеров можно получать либо полиэтилен для изготовления плёнок и изоляции проводов, либо для изготовления твёрдой тары и труб.

В качетсве нового подхода к получению полимеров группа учёных из Университета Карнеги Меллона исследовала процесс радикальной полимеризации с переносом атома. Этот метод позволяет легко регулировать процесс роста полимерной цепи, однако, он имеет высокую цену из-за использования медного катализатора, который может безвозвратно теряться. В ходе исследования было открыто, что добавление в реактор витамина C или другого агента, абсорбирующего электроны, можно уменьшить количества медного катализатора в 1000 раз. Это приведёт к уменьшениям затрат на очистку продуктов реакции от меди, ухудшающей свойства полимеров.
В тоже время в Университете Пенсельвании учёные использовали радикальную полимеризацию с переносом одиночного электрона. Этот метод имеет относительно небольшие энергозатраты на синтез. Помимо этого в нём в качестве катализатора применяется металлическая медь, что позволяет использовать в качестве растворителя чистую воду.
Отдельные виды полимерных материалов под действием теплоты, света и кислорода воздуха с течением времени изменяют свойства: теряют гибкость, эластичность, т. е. стареют. Процесс старения ускоряется при воздействии интенсивных и многократно повторяющихся нагрузок. Для предотвращения старения применяют специальные стабилизаторы (антистарители), представляющие собой различные металлорганические соединения свинца, бария, кадмия и др. Например, в качестве светостабилизатора применяют тинувин. При сегодняшней жесткой конкурентной борьбе на рынке переработки пластмасс одними из ключевых факторов успеха являются технологии и оборудование, применяемые переработчиками.

ТЕНДЕНЦИИ НА РЫНКЕ ПОЛИМЕРОВ

Одними из последних тенденций на рынке полимеров, в первую очередь в Европе, в области технологии производства пластмассовых изделий на ТПА является ужесточение требований проверяющих органов и самих переработчиков пластмасс к безопасности, чистоте, энергосбережению, эффективности производства; для проведения сертификации производства требуется точно знать ряд текущих параметров, например, реальное количество материала, переработанное в единицу времени; ориентир клиентов на максимальное автоматизирование вспомогательных процессов (роботизация, централизованное управление периферией); внедрение новых методов контроля и обеспечения высокого качества изделий и прочее.  На российском рынке термопластавтоматов наблюдается ежегодное увеличение объёма поставляемых в Россию ТПА, при этом наибольший прирост в последние годы составляет продукция азиатских производителей (особенно Южной Кореи, Тайваня, Китая);  низкое качество некоторого поставляемого в Россию оборудования (и не только азиатского), необязательность ряда компаний после поставки машин. Можно также отметить переход российских заказчиков от приобретения «простых» ТПА к покупке специализированных машин под конкретные задачи;  усложнение процедуры таможенного оформления и связанное с этим увеличение срока доставки и конечной стоимости ТПА;  рост числа новых официальных представительств иностранных поставщиков ТПА на территории России и проч.   Например, компания СП «СИЗ-Пумори», входящая в состав промышленного холдинга УМК «Пумори-СИЗ», 12 лет работает на рынке внедрения технологических решений для переработки пластмасс, предлагая современные оборудование и оснастку. СП «СИЗ-Пумори» является официальным представителем в России компании Po Yuen (TO’s) Machine Fty., Ltd., одного из ведущих производителей термопластавтоматов в Юго-Восточной Азии, и поставляет в Россию весь спектр горизонтальных ТПА, в том числе для тонкостенного литья, мультикомпонентные и ТПА для крупногабаритных изделий.  Литье тонкостенных изделий — одна из наиболее востребованных технологий сегодня. Она является ключевой при изготовлении деталей корпусного типа в оргтехнике, электротехнике, а также в упаковке (литье ведер, контейнеров), способствует уменьшению расхода материала, сокращает цикл литья изделия, особенно в совокупности с современными горячеканальными пресс-формами. Это снижает стоимость изделия, но создает трудности для переработчиков, поскольку тонкостенное литье осложняется необходимостью большого давления впрыска.  Для решения этих проблем компанией Po Yuen специально разработана серия термопластавтоматов EV с усилием смыкания от 50 до 500 т. Эти машины приспособлены для работы с увеличенным давлением впрыска, имеют повышенное давление в гидросистеме по сравнению со стандартными ТПА, большую пластикационную способность инжекционного узла, что позволяет преодолеть трудности, связанные с экстремальными условиями процесса. Для уменьшения цикла может использоваться накопительный впрыск: за счет возвратно-поступательного движения шнека создается дополнительное давление для более быстрого поступления расплава в форму.
Стремление улучшить внешние и эксплуатационные свойства изделия привело к комбинированию полимеров (мультикомпонентное литье). Широко распространены изделия с обрезиненной поверхностью для улучшения эргономики и дизайна — корпуса электроинструмента и сотовых телефонов, рукоятки ручного инструмента и многое другое. Технология мультикомпонентного литья может иметь и экономический эффект, снижая стоимость изделия за счет использования более дешевых материалов в тех местах, где свойства материала не важны, например, в качестве объемного наполнителя.  Po Yuen производит мультикомпонентные машины (серия BM) с усилием смыкания от 100 до 850 тонн, позволяющие одновременно впрыскивать до четырех различных материалов.

Таким образом, широкое распространение полимерных изделий, обусловленное физическими (химическими) свойствами подкрепляется  развитием тенологий,  Например,  корпорация Sony представила новую линейку кассетных аудиоплееров Walkman WM-FX202. Внешне они ничем не отличаются от традиционных плееров (разве что слегка изменен дизайн), однако главным их отличием является то, что корпуса устройств изготовлены из пластика, созданного на основе полимера молочной кислоты.
Такой пластик, как сообщают разработчики, после того, как плеер выброшен на помойку, легко разлагается на нетоксичные вещества при помощи специальных бактерий. Кроме этого, использование полимера для изготовления пластмассы позволит не только сохранить природные нефтяные ресурсы, но и приступить к массовому производству пластика, отличающегося повышенной ударопрочностью, термоустойчивостью и надежностью.
Другой пример. Исследователями из штата Виргиния была разработана экологически чистая пластмасса, распад которой происходит от легкого нагревания.  Современная пластмасса состоит из молекул, которые так крепко сцеплены друг с другом, что их расщепление при переработке материала очень трудоемко. Новая технология изготовления пластмассы дает возможность расщеплять этот продукт на молекулы и атомы при помощи повышения температуры. Для изготовления усовершенствованной пластмассы будут использованы водородные соединения и так называемую «технику живой полимеризации». В результате молекулы получаемого материала будут распадаться при легком нагревании, намного облегчая процесс утилизации пластмассы. Это позволит ускорить процесс переработки, сделать его более экологически чистым, сэкономить деньги. Учитывая тот факт, что из пластика изготавливается масса одноразовой продукции, экономия, предполагается, будет весьма существенной.
Свидетельством развития рынка пластмасс является старт нового проекта, создание первого российского справочника «Пластикс Каталог-2006. Справочник для полимерной индустрии: сырье, оборудование, сервис». Этот каталог вышел в марте 2006 года тиражом 3000 экземпляров. Он обобщил информацию о почти 800 производителях и поставщиках сырья, оборудования и услуг на рынки России и ближнего зарубежья, а также включил обзорные статьи ведущих специалистов о состоянии отрасли за прошлый год как в целом, так и по сегментам; информацию о новейших технологиях, материалах, оборудовании. Партнерами Каталога являются крупные международные компании: «Брюкнер» (Brueckner), «Энгель» (Engel), «Хаски» (Husky), «Тикона» (Ticona) и другие. Каталог издается при информационной поддержке Российского союза химиков3.  Кроме того, проведение 3-ей Международной специализированной выставки производства пластмасс и каучука также показывает, что промышленность пластмасс и их переработка является одной из базовых отраслей химической индустрии и масштабы применения полимерных материалов в народном хозяйстве любой страны являются общепризнанным в мировой практике критерием ее развитости.
Проведение этой выставки в 2006 году представило специалистам прекрасную возможность ознакомиться с новыми видами продукции, разработками в области технологий и оборудования, установить деловые контакты с украинскими и зарубежными партнерами.

7845 всего просмотров, 4 просмотров за сегодня

Комментарии к записи Пластмассы отключены

Пластмассы

| ИНФОРМАЦИЯ ПО ТЕМЕ | 21.11.2008

Эта статья написана в начале 70-х видным  советским химиком, проф. Еленой Борисовной Тростянской, автором многих работ, учебников и книг по химии полимеров и пластмасс. Однако, за прошедшие более 30  лет статья   нисколько не утратила  актуальности.   Конечно, некоторые приведенные здесь данные об объемах производства пластмасс устарели.  Следует отметить так же, что в число лидеров, среди пластмасс, наряду с полиэтиленом и полистиролом., сейчас вошел и полипропилен.

Пластические массы, пластмассы, пластики, материалы, содержащие в своём составе полимер, который в период формования изделий находится в вязкотекучем или высокоэластичном состоянии, а при эксплуатации — в стеклообразном или кристаллическом состоянии. В зависимости от характера процессов, сопутствующих формованию изделий, Пластмассы делят на реактопласты и термопласты. К числу реактопластов относят материалы, переработка в изделия которых сопровождается химической реакцией образования сетчатого полимера — отверждением; при этом пластик необратимо утрачивает способность переходить в вязкотекучее состояние (раствор или расплав). При формовании изделий из термопластов не происходит отверждения, и материал в изделии сохраняет способность вновь переходить в вязкотекучее состояние.




Пластмассы обычно состоят из нескольких взаимно совмещающихся и несовмещающихся компонентов. При этом, помимо полимера, в состав пластмассы могут входить наполнители полимерных материалов, пластификаторы, понижающие температуру текучести и вязкость полимера, стабилизаторы полимерных материалов, замедляющие его старение, красители и др. Пластмассы могут быть однофазными (гомогенными) или многофазными (гетерогенными, композиционными) материалами. В гомогенных пластмассах полимер является основным компонентом, определяющим свойства материала. Остальные компоненты растворены в полимере и способны улучшать те или иные его свойства. В гетерогенных пластмассах  полимер выполняет функцию дисперсионной среды (связующего) по отношению к диспергированным в нём компонентам, составляющим самостоятельные фазы. Для распределения внешнего воздействия на компоненты гетерогенного пластика необходимо обеспечить прочное сцепление на границе контакта связующего с частицами наполнителя, достигаемое адсорбцией или химической реакцией связующего с поверхностью наполнителя.

Наполненные пластики. Наполнитель в пластмассе  может быть в газовой или конденсированной фазах. В последнем случае его модуль упругости может быть ниже (низкомодульные наполнители) или выше (высокомодульные наполнители) модуля упругости связующего.

К числу газонаполненных пластиков относятся пенопласты — материалы наиболее лёгкие из всех пластмасс; их кажущаяся плотность составляет обычно от 0,02 до 0,8 г/см3.

Низкомодульные наполнители (их иногда называют эластификаторами), в качестве которых используют эластомеры, не понижая теплостойкости и твёрдости полимера, придают материалу повышенную устойчивость к знакопеременным и ударным нагрузкам (см. табл. 1), предотвращают прорастание микротрещин в связующем. Однако коэффициент термического расширения эластифицированных пластмасс выше, а деформационная устойчивость ниже, чем монолитных связующих. Эластификатор диспергируют в связующем в виде частиц размером 0,2—10 мкм. Это достигается полимеризацией мономера на поверхности частиц синтетических латексов, отверждением олигомера, в котором диспергирован эластомер, механическим перетиранием смеси жёсткого полимера с эластомером. Наполнение должно сопровождаться образованием сополимера на границе раздела частиц эластификатора со связующим. Это обеспечивает кооперативную реакцию связующего и эластификатора на внешнее воздействие в условиях эксплуатации материала. Чем выше модуль упругости наполнителя и степень наполнения им материала, тем выше деформационная устойчивость наполненного пластика. Однако введение высокомодульных наполнителей в большинстве случаев способствует возникновению остаточных напряжений в связующем, а следовательно, понижению прочности и монолитности полимерной фазы.

Свойства пластмассы с твёрдым наполнителем определяются степенью наполнения, типом наполнителя и связующего, прочностью сцепления на границе контакта, толщиной пограничного слоя, формой, размером и взаимным расположением частиц наполнителя. Пластмассы с частицами наполнителя малых размеров, равномерно распределёнными по материалу, характеризуются изотропией свойств, оптимум которых достигается при степени наполнения, обеспечивающей адсорбцию всего объёма связующего поверхностью частиц наполнителя. При повышении температуры и давления часть связующего десорбируется с поверхности наполнителя, благодаря чему материал можно формовать в изделия сложных форм с хрупкими армирующими элементами. Мелкие частицы наполнителя в зависимости от их природы до различных пределов повышают модуль упругости изделия, его твёрдость, прочность, придают ему фрикционные, антифрикционные, теплоизоляционные, теплопроводящие или электропроводящие свойства.

Для получения пластмассы низкой плотности применяют наполнители в виде полых частиц. Такие материалы (иногда называемые синтактическими пенами), кроме того, обладают хорошими звуко- и теплоизоляционными свойствами.

Применение в качестве наполнителей природных и синтетических органических волокон, а также неорганических волокон (стеклянных, кварцевых, углеродных, борных, асбестовых), хотя и ограничивает выбор методов формования и затрудняет изготовление изделий сложной конфигурации, но резко повышает прочность материала. Упрочняющая роль волокон в волокнитах, материалах, наполненных химическими волокнами (т. н. органоволокнитах), карбоволокнитах (см. Углеродопласты)и стекловолокнитах проявляется уже при длине волокна 2—4 мм. С увеличением длины волокон прочность возрастает благодаря взаимному их переплетению и понижению напряжений в связующем (при высокомодульном наполнителе), локализованных по концам волокон. В тех случаях, когда это допускается формой изделия, волокна скрепляют между собой в нити и в ткани различного плетения. Пластмассы, наполненные тканью (текстолиты), относятся к слоистым пластикам, отличающимся анизотропией свойств, в частности высокой прочностью вдоль слоёв наполнителя и низкой в перпендикулярном направлении. Этот недостаток слоистых пластиков отчасти устраняется применением т. н. объёмнотканых тканей, в которых отдельные полотна (слои) переплетены между собой. Связующее заполняет неплотности переплетений и, отверждаясь, фиксирует форму, приданную заготовке из наполнителя.

В изделиях несложных форм, и особенно в полых телах вращения, волокна-наполнители расположены по направлению действия внешних сил. Прочность таких пластмасс в заданном направлении определяется в основном прочностью волокон; связующее лишь фиксирует форму изделия и равномерно распределяет нагрузку по волокнам. Модуль упругости и прочность при растяжении изделия вдоль расположения волокон достигают очень высоких значений (см. табл. 1). Эти показатели зависят от степени наполнения пластмассы.

Для панельных конструкций удобно использовать слоистые пластики с наполнителем из древесного шпона или бумаги, в том числе бумаги из синтетического волокна (см. Древесные пластики, Гетинакс). Значительное снижение массы панелей при сохранении жёсткости достигается применением материалов трёхслойной, или сэндвичевой, конструкции с промежуточным слоем из пенопласта или сотопласта.

Основные виды термопластов. Среди термопластов наиболее разнообразно применение полиэтилена, поливинилхлорида и полистирола, преимущественно в виде гомогенных или эластифицированных материалов, реже газонаполненных и наполненных минеральными порошками или синтетическими органическими волокнами.

Пластмассы на основе полиэтилена легко формуются и свариваются в изделия сложных форм, они устойчивы к ударным и вибрационным нагрузкам, химически стойки, отличаются высокими электроизоляционными свойствами (диэлектрическая проницаемость 2,1—2,3) и низкой плотностью. Изделия с повышенной прочностью и теплостойкостью получают из полиэтилена, наполненного коротким (до 3 мм)стекловолокном. При степени наполнения 20% прочность при растяжении возрастает в 2,5 раза, при изгибе — в 2 раза, ударная вязкость — в 4 раза и теплостойкость — в 2,2 раза.

Жёсткая пластмасса  на основе поливинилхлорида — винипласт, в том числе эластифицированный (ударопрочный), формуется значительно труднее полиэтиленовых пластиков, но прочность её к статическим нагрузкам намного выше, ползучесть ниже и твёрдость выше. Более широкое применение находит пластифицированный поливинилхлорид — пластикат. Он легко формуется и надёжно сваривается, а требуемое сочетание в нём прочности, деформационной устойчивости и теплостойкости достигается подбором соотношения пластификатора и твёрдого наполнителя.

Пластмассы на основе полистирола формуются значительно легче, чем из винипласта, их диэлектрические свойства близки к свойствам полиэтиленовых пластмасс, они оптически прозрачны и по прочности к статическим нагрузкам мало уступают винипласту, но более хрупки, менее устойчивы к действию растворителей и горючи. Низкая ударная вязкость и разрушение вследствие быстрого прорастания микротрещин — свойства, особенно характерные для полистирольных пластиков, устраняются наполнением их эластомерами, т. е. полимерами или сополимерами с температурой стеклования ниже — 40 °С. Эластифицированный (ударопрочный) полистирол наиболее высокого качества получают полимеризацией стирола на частицах бутадиен-стирольного или бутадиен-нитрильного латекса. Материал, названный АБС, содержит около 15% гель-фракции (блок- и привитые сополимеры полистирола и указанных сополимеров бутадиена), составляющей граничный слой и соединяющей частицы эластомера с матрицей из полистирола. Морозостойкость материала ограничивает температура стеклования эластомера, теплостойкость — температура стеклования полистирола.

Теплостойкость перечисленных термопластов находится в пределах 60—80 °С, коэффициент термического расширения высок и составляет 1 • 10-4, их свойства резко изменяются при незначительном изменении температуры, деформационная устойчивость под нагрузкой низкая. Этих недостатков отчасти лишены термопласты, относящиеся к группе иономеров, например сополимеры этилена, пропилена или стирола с мономерами, содержащими ионогенные группы (обычно ненасыщенные карбоновые кислоты или их соли). Ниже температуры текучести благодаря взаимодействию ионогенных групп между макромолекулами создаются прочные физические связи, которые разрушаются при размягчении полимера. В иономерах удачно сочетаются свойства термопластов, благоприятные для формования изделий, со свойствами, характерными для сетчатых полимеров, т. е. с повышенной деформационной устойчивостью и жёсткостью. Однако присутствие ионогенных групп в составе полимера понижает его диэлектрические свойства и влагостойкость.

Пластмассы с более высокой теплостойкостью (100—130 °С) и менее резким изменением свойств с повышением температуры производят на основе полипропилена, полиформальдегида, поликарбонатов, полиакрилатов, полиамидов, особенно ароматических полиамидов. Быстро расширяется номенклатура изделий, изготавливаемых из поликарбонатов, в том числе наполненных стекловолокном.

Для деталей, работающих в узлах трения, широко применяются пластики из алифатических полиамидов, наполненных теплопроводящими материалами, например графитом.

Особенно высоки химическая стойкость, прочность к ударным нагрузкам и диэлектрические свойства пластиков на основе политетрафторэтилена и сополимеров тетрафторэтилена (см. Фторопласты). В материалах на основе полиуретанов удачно сочетается износостойкость с морозостойкостью и длительной прочностью в условиях знакопеременных нагрузок. Полиметилметакрилат используют для изготовления оптически прозрачных атмосферостойких материалов (см. также Стекло органическое).

Объём производства термопластов с повышенной теплостойкостью и органических стекол составляет около 10% общего объёма всех полимеров, предназначенных для изготовления пластмасс

Отсутствие реакций отверждения во время формования термопластов даёт возможность предельно интенсифицировать процесс переработки. Основные методы формования изделий из термопластов — литьё под давлением, экструзия, вакуумформование и пневмоформование. Поскольку вязкость расплава высокомолекулярных полимеров велика, формование термопластов на литьевых машинах или экструдерах требует удельных давлений 30—130 Мн/м = (300—1300 кгс/см2).

Дальнейшее развитие производства термопластов направлено на создание материалов из тех же полимеров, но с новыми сочетаниями свойств, применением эластификаторов, порошковых и коротковолокнистых наполнителей.

Основные виды реактопластов. После окончания формования изделий из реактопластов полимерная фаза приобретает сетчатую (трёхмерную) структуру. Благодаря этому отверждённые реактопласты имеют более высокие, чем термопласты, показатели по твёрдости, модулю упругости, теплостойкости, усталостной прочности, более низкий коэффициент термического расширения; при этом свойства отверждённых реактопластов не столь резко зависят от температуры. Однако неспособность отвержденных реактопластов переходить в вязкотекучее состояние вынуждает проводить синтез полимера в несколько стадий.

Первую стадию оканчивают получением олигомеров (смол) — полимеров с молекулярной массой 500—1000. Благодаря низкой вязкости раствора или расплава смолу легко распределить по поверхности частиц наполнителя даже в том случае, когда степень наполнения достигает 80—85% (по массе). После введения всех компонентов текучесть реактопласта остаётся настолько высокой, что изделия из него можно формовать заливкой (литьём), контактным формованием, намоткой. Такие реактопласты называются премиксами в том случае, когда они содержат наполнитель в виде мелких частиц, и препрегами, если наполнителем являются непрерывные волокна, ткань, бумага. Технологическая оснастка для формования изделий из премиксов и препрегов проста и энергетические затраты невелики, но процессы связаны с выдержкой материала в индивидуальных формах для отверждения связующего. Если смола отверждается по реакции поликонденсации, то формование изделий сопровождается сильной усадкой материала и в нём возникают значительные остаточные напряжения, а монолитность, плотность и прочность далеко не достигают предельных значений (за исключением изделий, полученных намоткой с натяжением). Чтобы избежать этих недостатков, в технологии изготовления изделий из смол, отверждающихся по реакции поликонденсации, предусмотрена дополнительная стадия (после смешения компонентов) — предотверждение связующего, осуществляемое при вальцевании или сушке. При этом сокращается длительность последующей выдержки материала в формах и повышается качество изделий, однако заполнение форм из-за понижения текучести связующего становится возможным только при давлениях 25—60 Мн/м2 (250—600 кгс/см2).

Смола в реактопластах может отверждаться самопроизвольно (чем выше температура, тем больше скорость) или с помощью полифункционального низкомолекулярного вещества — отвердителя.

Реактопласты с любым наполнителем изготавливают, применяя в качестве связующего феноло-альдегидные смолы, часто эластифицированные поливинилбутиралем (см. Поливинилацетали), бутадиен-нитрильным каучуком, полиамидами, поливинилхлоридом (такие материалы называют фенопластами), и эпоксидные смолы, иногда модифицированные феноло- или анилино-формальдегидными смолами или отверждающимися олигоэфирами.

Высокопрочные пластмассы с термостойкостью до 200 °С производят, сочетая стеклянные волокна или ткани с отверждающимися олигоэфирами, феноло-формальдегидными или эпоксидными смолами. В производстве изделий, длительно работающих при 300 °С, применяют стеклопластики или асбопластики с кремнийорганическим связующим; при 300—340 °С — полиимиды в сочетании с кремнезёмными, асбестовыми или углеродными волокнами; при 250—500 °С в воздушной и при 2000—2500 °С в инертной средах — фенопласты или пластики на основе полиамидов, наполненные углеродным волокном и подвергнутые карбонизации (графитации) после формования изделий.

Высокомодульные пластмассы [модуль упругости 250—350 Гн/м2 (25 000—35 000 кгс/мм2)} производят, сочетая эпоксидные смолы с углеродными, борными или монокристаллическими волокнами (см. также Композиционные материалы). Монолитные и лёгкие пластмассы, устойчивые к вибрационным и ударным нагрузкам, водостойкие и сохраняющие диэлектрические свойства и герметичность в условиях сложного нагружения, изготавливают, сочетая эпоксидные, полиэфирные или меламино-формальдегидные смолы с синтетическими волокнами или тканями, бумагой из этих волокон.

Наиболее высокие диэлектрические свойства (диэлектрическая проницаемость 3,5—4,0) характерны для материалов на основе кварцевых волокон и полиэфирных или кремнийорганических связующих.

Древесно-слоистые пластики широко используют в промышленности стройматериалов и в судостроении.

Объём производства и структура потребления пластмасс. Пластические материалы на основе природных смол (канифоли, шеллака, битумов и др.) известны с древних времён. Старейшей пластмассой, приготовленной из искусственного полимера — нитрата целлюлозы, является целлулоид, производство которого было начато в США в 1872. В 1906—10 в России и Германии в опытном производстве налаживается выпуск первых реактопластов — материалов на основе феноло-формальдегидной смолы. В 30-х гг. в СССР, США, Германии и др. промышленно развитых странах организуется производство термопластов — поливинилхлорида, полиметилметакрилата, полиамидов, полистирола. Однако бурное развитие промышленности пластмасс началось только после 2-й мировой войны 1939—45. В 50-х гг. во многих странах начинается выпуск самой крупнотоннажной пластмассы— полиэтилена.

В СССР становление промышленности  пластических масс,  как самостоятельной отрасли относится к периоду довоенных пятилеток (1929—40). Производство пластмасс составило (в тыс. т): в 1940 — 24, в 1950 — 75, в 1960 — 312, в 1970 — 1673, в 1973 — около 2300. Основные предприятия сосредоточены в Европейской части (84% общесоюзного производства пластических масс ). К их числу относятся орехово-зуевский завод «Карболит», Казанский завод органического синтеза, Полоцкий химический комбинат, Свердловский завод пластмасс, Владимирский химический завод, Горловский химический комбинат, Московский нефтеперерабатывающий завод. В перспективе в связи с созданием крупнейших Томского и Тобольского нефтехимических комплексов на базе Тюменских нефтяных месторождений, развитием Омского нефтехимического комплекса и соответствующих заводов пластмасс около 30% их производства будет приходиться на восточные районы. Основные действующие предприятия в этих районах — кемеровский завод «Карболит», Тюменский завод пластмасс.

Производство пластических масс  в 1973 в некоторых капиталистических промышленно развитых странах характеризуется следующими данными (в тыс. т): США — 13200, Япония — 6500, ФРГ — 6500, Франция — 2500, Италия — 2300, Великобритания — 1900.

В 1973 мировое производство полимеров для пластических масс  достигло ~ 43 млн. т. Из них около 75% приходилось на долю термопластов (25% полиэтилена, 20% поливинилхлорида, 14% полистирола и его производных, 16% прочих пластиков). Существует тенденция к дальнейшему увеличению доли термопластов (в основном полиэтилена) в общем производстве пластмасс.

Хотя доля термореактивных смол в общем выпуске полимеров для пластмасс  составляет всего около 25%, фактически объём производства реактопластов выше, чем термопластов, из-за высокой степени наполнения (60—80%) смолы.

Применение пластических масс в различных областях техники характеризуют данны

Производство пластмасс развивается значительно интенсивнее, чем таких традиционных конструкционных материалов, как чугун и алюминий (табл. 3).

Потребление пластмасс в строительстве непрерывно возрастает. При увеличении мирового производства пластических масс  в 1960—70 примерно в 4 раза объём их потребления в строительстве возрос в 8 раз. Это обусловлено не только уникальными физико-механическими свойствами полимеров, но также и их ценными архитектурно-строительными характеристиками. Основные преимущества пластмасс  перед др. строительными материалами — лёгкость и сравнительно большая удельная прочность. Благодаря этому может быть существенно уменьшена масса строительных конструкций, что является важнейшей проблемой современного индустриального строительства. Наиболее широко пластмассы  (главным образом рулонные и плиточные материалы) используют для покрытия полов и др. отделочных работ (см. также Полимербетон), герметизации, гидро- и теплоизоляции зданий, в производстве труб и санитарно-технического оборудования. Их применяют и в виде стеновых панелей, перегородок, элементов кровельных покрытий (в т. ч. светопрозрачных), оконных переплётов, дверей, пневматических строительных конструкций, домиков для туристов, летних павильонов и др.

Пластмассы занимают одно из ведущих мест среди конструкционных материалов машиностроения. Потребление их в этой отрасли становится соизмеримым (в единицах объёма) с потреблением стали. Целесообразность использования Пластмассы в машиностроении определяется прежде всего возможностью удешевления продукции. При этом улучшаются также важнейшие технико-экономические параметры машин — уменьшается масса, повышаются долговечность, надёжность и др. Из пластмасс  изготовляют зубчатые и червячные колёса, шкивы, подшипники, ролики, направляющие станков, трубы, болты, гайки, широкий ассортимент технологической оснастки и др.

Основные достоинства пластмасс, обусловливающие их широкое применение в авиастроении,— лёгкость, возможность изменять технические свойства в большом диапазоне. За период 1940—70 число авиационных деталей из пластмасс  увеличилось от 25 до 10 000. Наибольший прогресс в использовании полимеров достигнут при создании лёгких самолётов и вертолётов. Тенденция ко всё более широкому их применению характерна также для производства ракет и космических аппаратов, в которых масса деталей из пластмассы может составлять 50% от общей массы аппарата. С использованием реактопластов изготовляют реактивные двигатели, силовые агрегаты самолётов (оперение, крылья, фюзеляж и др.), корпуса ракет, колёса, стойки шасси, несущие винты вертолётов, элементы тепловой защиты, подвесные топливные баки и др. Термопласты применяют в производстве элементов остекления, антенных обтекателей, при декоративной отделке интерьеров самолётов и др., пено- и сотопласты — как заполнители высоконагруженных трёхслойных конструкций.

Области применения пластических масс  в судостроении очень разнообразны, а перспективы использования практически неограничены. Их применяют для изготовления корпусов судов и корпусных конструкций (главным образом стеклопластики), в производстве деталей судовых механизмов, приборов, для отделки помещений, их тепло-, звуко- и гидроизоляции.

В автомобилестроении особенно большую перспективу имеет применение пластмасс  для изготовления кабин, кузовов и их крупногабаритных деталей, т.к. на долю кузова приходится около половины массы автомобиля и ~ 40% его стоимости. Кузова из пластмассы более надёжны и долговечны, чем металлические, а их ремонт дешевле и проще. Однако,  пластмассы не получили ещё большого распространения в производстве крупногабаритных деталей автомобиля, главным образом из-за недостаточной жёсткости и сравнительно невысокой атмосферостойкости. Наиболее широко пластмассы применяют для внутренней отделки салона автомобиля. Из них изготовляют также детали двигателя, трансмиссии, шасси. Огромное значение, которое пластмассы играют в электротехнике, определяется тем, что они являются основой или обязательным компонентом всех элементов изоляции электрических машин, аппаратов и кабельных изделий. Пластмассы часто применяют и для защиты изоляции от механических воздействий и агрессивных сред, для изготовления конструкционных материалов и др.

Тенденция ко всё более широкому применению пластмассы (особенно плёночных материалов, см. Плёнки полимерные) характерна для всех стран с развитым сельским хозяйством. Их используют при строительстве культивационных сооружений, для мульчирования почвы, дражирования семян, упаковки и хранения с.-х. продукции и т.д. В мелиорации и с.-х. водоснабжении полимерные плёнки служат экранами, предотвращающими потерю воды на фильтрацию из оросительных каналов и водоёмов; из пластмасс изготовляют трубы различного назначения, используют их в строительстве водохозяйственных сооружений и др.

В медицинской промышленности применение пластмассы позволяет осуществлять серийный выпуск инструментов, специальной посуды и различных видов упаковки для лекарств. В хирургии используют пластмассовые клапаны сердца, протезы конечностей, ортопедические вкладки, туторы, стоматологические протезы, хрусталики глаза и др.

6651 всего просмотров, 2 просмотров за сегодня

Комментарии к записи Полимеры отключены

Полимеры

| ИНФОРМАЦИЯ ПО ТЕМЕ | 21.11.2008

Автор этой статьи  акад.  Виктор Александрович  Кабанов — выдающийся ученый в области химии высокомолекулярных соединений, ученик и преемник акад. В.А. Каргина, одного из мировых лидеров науки о полимерах, создателя  крупной научной школы, автора большого количества работ, книг и учебных пособий.
Полимеры (от греч. polymeres — состоящий из многих частей, многообразный), химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев). Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и (или) координационных валентностей.

Классификация полимеров

По происхождению полимеры  делятся на природные (биополимеры), например белки, нуклеиновые кислоты, смолы природные, и синтетические, например полиэтилен, полипропилен, феноло-формальдегидные смолы. Атомы или атомные группы могут располагаться в макромолекуле в виде: открытой цепи или вытянутой в линию последовательности циклов (линейные полимеры., например каучук натуральный); цепи с разветвлением (разветвленные полимеры., например амилопектин); трёхмерной сетки (сшитые полимеры, например отверждённые эпоксидные смолы). Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами, например поливинилхлорид, поликапроамид, целлюлоза.

Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых стереоизомеров или из различных стереоизомеров, чередующихся в цепи в определённой периодичности, полимеры называются стереорегулярными (см. Стереорегулярные полимеры).

Полимеры, макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Такие сополимеры называются привитыми (см. также Сополимеры).

Полимеры, в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами.

В зависимости от состава основной (главной) цепи полимеры делят на: гетероцепные, в основной цепи которых содержатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора, и гомоцепные, основные цепи которых построены из одинаковых атомов. Из гомоцепных полимеров наиболее распространены карбоцепные полимеры, главные цепи которых состоят только из атомов углерода, например полиэтилен, полиметилметакрилат, политетрафторэтилен. Примеры гетероцепных полимеров. — полиэфиры (полиэтилентерефталат, поликарбонаты и др.), полиамиды, мочевино-формальдегидные смолы, белки, некоторые кремнийорганические полимеры. полимеры, макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими (см. Элементоорганические полимеры). Отдельную группу полимеров. образуют неорганические полимеры, например пластическая сера, полифосфонитрилхлорид (см. Неорганические полимеры).

Свойства и важнейшие характеристики полимеров

Линейные полимеры обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотропные высокоориентированные волокна и плёнки (см. Полимеров ориентированное состояние); способность к большим, длительно развивающимся обратимым деформациям (см. Высокоэластическое состояние); способность в высокоэластическом состоянии набухать перед растворением; высокая вязкость растворов (см. Растворы полимеров, Набухание). Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трёхмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластическим деформациям.

Полимеры могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации — регулярность достаточно длинных участков макромолекулы. В кристаллических полимерах. возможно возникновение разнообразных надмолекулярных структур (фибрилл, сферолитов, монокристаллов и др.), тип которых во многом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) полимеров  менее выражены, чем в кристаллических.
Незакристаллизованные полимеры могут находиться в трёх физических состояниях: стеклообразном, высокоэластическом и вязкотекучем. полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластическое состояние называются эластомерами, с высокой — пластиками. В зависимости от химического состава, строения и взаимного расположения макромолекул свойства полимеров. могут меняться в очень широких пределах. Так, 1,4-цис-полибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 град.С — эластичный материал, который при температуре — 60 град.С переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жёстких цепей, при температуре около 20 град.С — твёрдый стеклообразный продукт, переходящий в высокоэластическое состояние лишь при 100 град.С. Целлюлоза — полимер с очень жёсткими цепями, соединёнными межмолекулярными водородными связями, вообще не может существовать в высокоэластическое состоянии до температуры её разложения. Большие различия в свойствах П. могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики. Так, стереорегулярный полистирол — кристаллическое вещество с температурой плавления около 235 град.С, а нестереорегулярный (атактический) вообще не способен кристаллизоваться и размягчается при температуре около 80 град.С.

Полимеры могут вступать в следующие основные типы реакций: образование химических связей между макромолекулами (т. н. сшивание), например при вулканизации каучуков, дублении кожи; распад макромолекул на отдельные, более короткие фрагменты (см. Деструкция полимеров); реакции боковых функциональных групп полимеров. с низкомолекулярными веществами, не затрагивающие основную цепь (т. н. полимераналогичные превращения); внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы, например внутримолекулярная циклизация. Сшивание часто протекает одновременно с деструкцией. Примером полимераналогичных превращений может служить омыление поливинилацетата, приводящее к образованию поливинилового спирта. Скорость реакций полимеров. с низкомолекулярными веществами часто лимитируется скоростью диффузии последних в фазу полимеров. Наиболее явно это проявляется в случае сшитых полимеров. Скорость взаимодействия макромолекул с низкомолекулярными веществами часто существенно зависит от природы и расположения соседних звеньев относительно реагирующего звена. Это же относится и к внутримолекулярным реакциям между функциональными группами, принадлежащими одной цепи.

Некоторые свойства полимеров., например растворимость, способность к вязкому течению, стабильность, очень чувствительны к действию небольших количеств примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный полимеры из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1-2 поперечные связи.

Важнейшие характеристики полимеров — химический состав, молекулярная масса и молекулярно-массовое распределение, степень разветвлённости и гибкости макромолекул, стереорегулярность и др. Свойства полимеров. существенно зависят от этих характеристик.

Получение полимеров

Природные полимеры образуются в процессе биосинтеза в клетках живых организмов. С помощью экстракции, фракционного осаждения и др. методов они могут быть выделены из растительного и животного сырья. Синтетические полимеры получают полимеризацией и поликонденсацией. Карбоцепные полимеры  обычно синтезируют полимеризацией мономеров с одной или несколькими кратными углерод-углеродными связями или мономеров, содержащих неустойчивые карбоциклические группировки (например, из циклопропана и его производных). Гетероцепные полимеры получают поликонденсацией, а также полимеризацией мономеров, содержащих кратные связи углерод-элемент (например, С = О, С ? N, N = С = О) или непрочные гетероциклические группировки (например, в окисях олефинов, лактамах).

Применение полимеров

Благодаря механической прочности, эластичности, электроизоляционным и др. ценным свойствам изделия из полимеров применяют в различных отраслях промышленности и в быту. Основные типы полимерных материалов — пластические массы, резины, волокна (см. Волокна текстильные, Волокна химические), лаки, краски, клеи, ионообменные смолы. Значение биополимеров определяется тем, что они составляют основу всех живых организмов и участвуют практически во всех процессах жизнедеятельности.

Историческая справка

Термин «полимерия» был введён в науку И. Берцелиусом в 1833 для обозначения особого вида изомерии, при которой вещества (полимеры), имеющие одинаковый состав, обладают различной молекулярной массой, например этилен и бутилен, кислород и озон. Т. о., содержание термина не соответствовало современным представлениям о полимерах. «Истинные» синтетические полимеры к тому времени ещё не были известны.

Ряд полимеров  был, по-видимому, получен ещё в 1-й половине 19 в. Однако химики тогда обычно пытались подавить полимеризацию и поликонденсацию, которые вели к «осмолению» продуктов основной химической реакции, т. е., собственно, к образованию полимера. (до сих пор полимеры  часто называли «смолами»). Первые упоминания о синтетических полимерах  относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол).

Химия полимеров  возникла только в связи с созданием А. М. Бутлеровым теории химического строения (начало 60-х гг. 19 в.). А. М. Бутлеров изучал связь между строением и относительной устойчивостью молекул, проявляющейся в реакциях полимеризации. Дальнейшее своё развитие (до конца 20-х гг. 20 в.) наука о полимерах  получила главным образом благодаря интенсивным поискам способов синтеза каучука, в которых участвовали крупнейшие учёные многих стран (Г. Бушарда, У. Тилден, нем. учёный К. Гарриес, И. Л. Кондаков, С. В. Лебедев и др.). В 30-х гг. было доказано существование свободнорадикального (Г. Штаудингер и др.) и ионного (американский учёный Ф. Уитмор и др.) механизмов полимеризации. Большую роль в развитии представлений о поликонденсации сыграли работы У. Карозерса.

С начала 20-х гг. 20 в. развиваются также теоретические представления о строении полимеров. Вначале предполагалось, что такие биополимеры, как целлюлоза, крахмал, каучук, белки, а также некоторые синтетические полимеры, сходные с ними по свойствам (например, полиизопрен), состоят из малых молекул, обладающих необычной способностью ассоциировать в растворе в комплексы коллоидной природы благодаря нековалентным связям (теория «малых блоков»). Автором принципиально нового представления о полимерах как о веществах, состоящих из макромолекул, частиц необычайно большой молекулярной массы, был Г. Штаудингер. Победа идей этого учёного (к началу 40-х гг. 20 в.) заставила рассматривать полимеры как качественно новый объект исследования химии и физики.

2632 всего просмотров, 3 просмотров за сегодня

Комментарии к записи Полимеры в народном хозяйстве отключены

Полимеры в народном хозяйстве

| ИНФОРМАЦИЯ ПО ТЕМЕ | 21.11.2008

Полимеры — химические соединения с высокой мол. массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы) состоят из большого числа повторяющихся  группировок  (мономерных звеньев). Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и (или) координационных валентностей.

Классификация полимеров

По происхождению полимеры делятся на природные (биополимеры), например белки, нуклеиновые кислоты, смолы природные, и синтетические, например полиэтилен, полипропилен,  феноло-формальдегидные смолы. Атомы или атомные группы могут располагаться в макромолекуле в виде: открытой цепи или вытянутой в линию последовательности циклов  (линейные полимеры, например каучук натуральный); цепи с разветвлением (разветвленные полимеры, например амилопектин), трехмерной сетки (сшитые полимеры, например отверждённые эпоксидные смолы). Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами (например поливинилхлорид, поликапроамид, целлюлоза).
Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых стереоизомеров или из различных стереоизомеров, чередующихся в цепи в определенной периодичности, полимеры называются стереорегулярными.
Полимеры, макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Такие сополимеры называются привитыми.
Полимеры, в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами.
В зависимости от состава основной (главной) цепи полимеры, делят на: гетероцепные,  в основной цепи которых содержатся атомы различных элементов,  чаще всего углерода,  азота, кремния, фосфора, и гомоцепные, основные цепи которых построены из одинаковых атомов. Из гомоцепных полимеров наиболее распространены  карбоцепные полимеры, главные цепи которых состоят только из атомов углерода, например полиэтилен, полиметилметакрилат, политетрафторзтилен. Примеры гетероцепных полимеров — полиэфиры (полиэтилентерефталат, поликарбонаты), полиамиды, мочевино-формальдегидные смолы, белки, некоторые кремнийорганические полимеры. Полимеры, макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими. Отдельную группу полимеров образуют неорганические полимеры, например пластическая сера, полифосфонитрилхлорид.

Свойства и важнейшие характеристики полимеров

Линейные полимеры обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотропные высокоориентированные волокна и пленки , способность к большим, длительно развивающимся обратимым деформациям; способность в высокоэластичном состоянии набухать перед растворением; высокая вязкость растворов. Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трехмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластичным деформациям.
Полимеры могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации — регулярность достаточно длинных участков макромолекулы. В кристаллических полимерах возможно возникновение разнообразных надмолекулярных структур (фибрилл, сферолитов, монокристаллов, тип которых во многом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) полимерах менее выражены, чем в кристаллических.
Незакристаллизованные полимеры могут находиться в трех физических состояниях: стеклообразном, высокоэластичном и вязкотекучем. Полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластичное состояние называются эластомерами, с высокой — пластиками. В зависимости от химического состава, строения и взаимного расположения макромолекул свойства полимеры могут меняться в очень широких пределах. Так, 1,4.-цисполибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 °С — эластичный материал, который при температуре -60 °С переходит в стеклообразное состояние;  полиметилметакрилат, построенный из более жестких цепей, при температуре около 20 °С — твердый стеклообразный продукт, переходящий в высокоэластичное состояние лишь при 100 °С. Целлюлоза — полимер с очень жесткими цепями, соединенными межмолекулярными водородными связями, вообще не может существовать в высокоэластичном  состоянии  до  температуры  ее  разложения.  Большие различия в свойствах полимеров могут наблюдаться даже в том случае, если различия в строении  макромолекул на первый взгляд и невелики. Так, стереорегулярный полистирол — кристаллическое вещество с температурой плавления около 235 °С, а нестереорегулярный вообще не способен кристаллизоваться и размягчается при температуре около 80 °С.
Полимеры могут вступать в следующие основные типы реакций: образование химических связей между макромолекулами (так называемое сшивание), например при вулканизации каучуков, дублении кожи; распад макромолекул на отдельные, более короткие фрагменты, реакции боковых функциональных групп полимеров с   низкомолекулярными   веществами, не затрагивающие основную цепь (так называемые полимераналогичные  превращения); внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы, например внутримолекулярная циклизация. Сшивание часто протекает одновременно с деструкцией. Примером полимераналогичных превращений может служить омыление поливтилацетата, приводящее к образованию поливинилового спирта. Скорость реакций полимеров с низкомолекулярными веществами часто лимитируется скоростью диффузии последних в фазу полимера. Наиболее явно это проявляется в случае сшитых полимеров. Скорость взаимодействия макромолекул с низкомолекулярными веществами часто существенно зависит от природы и расположения соседних звеньев относительно реагирующего звена. Это же относится и к внутримолекулярным реакциям между функциональными группами, принадлежащими одной цепи.

Некоторые свойства полимеров, например растворимость, способность к вязкому течению, стабильность,   очень чувствительны к действию небольших количеств примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный полимер из растворимого в полностью нерастворимый, достаточно  образовать на одну макромолекулу 1-2 поперечные связи.
Важнейшие характеристики полимеров — химический состав, молекулярная масса и молекулярно-массовое распределение, степень разветвленности и гибкости макромолекул, стереорегулярность и другие. Свойства полимеров существенно зависят от этих характеристик.
Получение.
Природные полимеры образуются в процессе биосинтеза в клетках живых организмов. С помощью экстракции, фракционного осаждения и других методов они могут быть выделены из растительного и животного сырья. Синтетические полимеры получают полимеризацией и поликонденсацией. Карбоцепные полимеры обычно синтезируют полимеризацией мономеров с одной или несколькими кратными углеродными связями или мономеров, содержащих неустойчивые карбоциклические группировки (например, из циклопропана и его производных), Гетероцепные полимеры получают поликонденсацией, а также полимеризацией мономеров, содержащих кратные связи углеродоэлемента (например, С=О, С=N, N=С=О) или непрочные гетероциклические   группировки.

Полимеры в сельском хозяйстве

Сегодня можно говорить по меньшей мере о четырех основных направлениях использования полимерных материалов в сельском хозяйстве. И в отечественной и в мировой практике первое место принадлежит пленкам. Благодаря применению мульчирующей перфорированной пленки на полях урожайность некоторых культур повышается до 30%, а сроки созревания ускоряются на 10-14 дней. Использование полиэтиленовой пленки для гидроизоляции создаваемых водохранилищ обеспечивает существенное снижение потерь запасаемой влаги. Укрытие пленкой сенажа, силоса, грубых кормов обеспечивает их лучшую сохранность даже в неблагоприятных погодных условиях. Но главная область использования пленочных полимерных материалов в сельском хозяйстве — строительство и эксплуатация пленочных теплиц. В настоящее время стало технически возможным выпускать полотнища пленки шириной до 16 м, а это позволяет строить пленочные теплицы шириной в основании до 7,5 и длиной до 200 м. В таких теплицах можно все сельскохозяйственные работы проводить механизированно; более того, эти теплицы позволяют выращивать продукцию круглогодично. В холодное время теплицы обогреваются опять-таки с помощью полимерных труб, заложенных в почву на глубину 60-70 см.
С точки зрения химической структуры полимеров, используемых в тепличных хозяйствах такого рода, можно отметить преимущественное использование полиэтилена, непластифицированного поливинилхлорида и в меньшей мере полиамидов. Полиэтиленовые пленки отличаются лучшей светопроницаемостью, лучшими прочностными свойствами, но худшей погодоустойчивостью и сравнительно высокими теплопотерями. Они могут исправно служить лишь 1-2 сезона. Полиамидные и другие пленки пока применяются сравнительно редко.
Другая область широкого применения полимерных материалов в сельском хозяйстве — мелиорация. Тут и разнообразные формы труб и шлангов для полива, особенно для самого прогрессивного в настоящее время капельного орошения; тут и перфорированные пластмассовые трубы для дренажа. Интересно отметить, что срок службы пластмассовых труб в системах дренажа, напри мер, в республиках Прибалтики в 3-4 раза дольше, чем соответствующих керамических труб. Вдобавок использование пластмассовых труб, особенно из гофрированного поливинилхлорида, позволяет почти полностью исключить ручной труд при прокладке дренажных систем.
Два остальных главных направления использования полимерных материалов в сельском хозяйстве — строительство, особенно животноводческих помещений, и  машиностроение.

Овцы в синтетических шубах

Овца, как известно, животное неразумное. Особенно — меринос. Знает ведь, что шерсть нужна хозяину чистой а все-таки то в пыли изваляется, то, продираясь по кус там, колючек на себя нацепляет. Мыть и чистить овечью шерсть после стрижки — процесс сложный и трудоемкий. Чтобы упростить его, чтобы защитить шерсть от загрязнений, австралийские овцеводы изобрели попону из полиэтиленовой ткани. Надевают ее на овцу сразу после стрижки, затягивают резиновыми застежками. Овца растет, и шерсть на ней растет, распирает попону, а резинки слабеют, попона все время как по мерке сшита. Но вот беда: под австралийским солнцем сам полиэтилен хрупким становится. И с этим справились с помощью аминных стабилизаторов. Осталось  еще приучить овцу не рвать полиэтиленовую ткань о колючки и заборы.

Нумерованные животные

Начиная с 1975 года весь крупный рогатый скот, а также овцы и козы в государственных хозяйствах Чехословакии должны носить в ушах своеобразные сережки — пластмассовые таблички с указанием основных данных о животных. Эта новая форма регистрации животных должна заменить применявшееся ранее клеймение, что признано специалистами негигиеничным. Миллионы пластмассовых табличек должны выпускать артели местной промышленности.

Микроб — кормилец

Комплексную задачу очистки сточных вод целлюлозно-бумажного производства и одновременного производства кормов для животноводства решили финские ученые. Специальную культуру микробов выращивают на отработанных сульфитных щелоках в специальных ферментаторах при 38° С, одновременно добавляя туда аммиак. Выход кормового белка составляет 50-55%; его с аппетитом поедают свиньи и домашняя птица.

Синтетическая травка

Традиционно принято многие спортивные мероприятия проводить на площадках с травяным покрытием. Футбол, теннис, крокет… К сожалению, динамичное развитие спорта, пиковые нагрузки у ворот или у сетки приводят к тому, что трава не успевает подрасти от одного состязания до другого. И никакие ухищрения садовников не могут с этим
справиться. Можно, конечно, проводить аналогичные состязания на площадках, скажем, с асфальтовым покрытием, но как же быть с традиционными видами спорта? На помощь пришли синтетические материалы. Полиамидную пленку толщиной 1/40 мм (25 мкм) нарезают на полоски шириной 1,27 мм, вытягивают их, извивают, а затем переплетают так, чтобы получить легкую объемную маcсу, имитирующую траву. Во избежание пожара к полимеру загодя добавляют огнезащитные средства, а чтобы из-под ног у спортсменов не посыпались электрическое искры -антистатик. Коврики из синтетической травы наклеивают на подготовленное основание — и вот зам готов травяной корт или футбольное поле, или иная спортивная площадка. А по мере износа отдельные участки игрового поля можно заменять новыми ковриками, изготовленными по той же технологии и того же зеленого цвета.

Полимеры в машиностроении

Ничего удивительного в том, что эта отрасль — главный потребитель чуть ли не всех материалов, производимых в нашей стране, в том числе и полимеров. Использование полимерных материалов в машиностроении растет такими темпами, какие не знают прецедента во всей человеческой истории. К примеру, в 1976 1. машиностроение нашей страны потребило 800000 т пласт масс, а в 1960 г. — всего 116 000 т. При этом интересно отметить, что еще десять лет назад в машиностроение направлялось 37—38% всех выпускающихся в нашей стране пластмасс, а  1980 г. доля машиностроения в использовании пластмасс снизилась до 28%. И дело тут не в том, что могла бы снизится потребность, а в том, что другие отрасли народного хозяйства стали применять полимерные материалы в сельском хозяйстве, в строительстве, в легкой и пищевой промышленности еще более интенсивно.
При этом уместно отметить, что в последние годы несколько изменилась и функция полимерных материалов в любой отрасли. Полимерам стали доверять все более и более ответственные задачи. Из полимеров стали изготавливать все больше относительно мелких, но конструктивно сложных и ответственных деталей машин и механизмов, и в то же время все чаще полимеры стали применяться в изготовлении крупногабаритных корпусных деталей машин и механизмов, несущих значительные нагрузки. Ниже будет подробнее рассказано о применении полимеров в автомобильной и авиационной промышленности, здесь же упомянем лишь один примечательный факт: несколько лет назад по Москве ходил цельнопластмассовый трамвай. А вот другой факт: четверть всех мелких судов — катеров, шлюпок, лодок — теперь строится из пластических масс.
До недавних пор широкому использованию полимерных материалов в машиностроении препятствовали два, казалось бы, общепризнанных недостатка полимеров: их низкая (по сравнению с марочными сталями) прочность и низкая теплостойкость. Рубеж прочностных свойств полимерных материалов удалось преодолеть переходом к композиционным материалам, главным образом стекло и углепластикам. Так что теперь выражение “пластмасса прочнее стали” звучит вполне обоснованно. В то же время полимеры сохранили свои позиции при массовом изготовлении огромного числа тех деталей, от которых не требуется особенно высокая прочность: заглушек, штуцеров, колпачков, рукояток, шкал и корпусов измерительных приборов. Еще одна область, специфическая  именно  для  полимеров,  где  четче  всего  проявляются их преимущества перед любыми иными материалами, — это область внутренней и внешней отделки.
То же самое можно сказать и о машиностроении. Почти три четверти внутренней отделки салонов легковых автомобилей, автобусов, самолетов, речных и морских судов и пассажирских вагонов выполняется ныне из декоративных пластиков, синтетических пленок, тканей, искусственной кожи. Более того, для многих машин и аппаратов только использование антикоррозионной отделки синтетическими материалами обеспечило их надежную, долговременную эксплуатацию. К примеру, многократное использование изделия в экстремальных физико-технических условиях (космосе) обеспечивается, в частности, тем, что вся его внешняя поверхность покрыта синтетическими плитками, к тому же приклеенными синтетическим полиуретановым или полиэпоксидным клеем. А аппараты для химического производства? У них внутри бывают такие агрессивные среды, что никакая марочная сталь не выдержала бы. Единственный выход — сделать внутреннюю облицовку из платины или из пленки фторопласта. Гальванические ванны могут работать только при условии, что они сами и конструкции подвески покрыты синтетическими смолами и пластиками.
Широко применяются полимерные материалы и в такой отрасли народного хозяйства, как приборостроение. Здесь получен самый высокий экономический эффект в среднем в 1,5-2,0 раза выше, чем в других отраслях машиностроения. Объясняется это, в частности тем что большая часть полимеров перерабатывается в приборостроении самыми прогрессивными способами что повышает уровень полезного использования (и безотходность отходность) термопластов, увеличивает коэффициент замены дорогостоящих материалов. Наряду с этим значительно снижаются затраты  живого труда. Простейшим и весьма убедительным примером может служить изготовление печатных схем: процесс, не мыслимый без полимерных материалов, а с ними и полностью автоматизированный.

Есть и другие подотрасли, где использование полимерных материалов обеспечивает и экономию материальных и энергетических ресурсов, и рост производительности труда. Почти полную автоматизацию обеспечило применение полимеров в производстве тормозных систем для транспорта. Неспроста практически все функциональные детали тормозных систем для автомобилей и около 45% для железнодорожного подвижного состава делаются из синтетических пресс-материалов.    Около   50%   деталей   вращения   и   зубчатых   колес
изготовляется из прочных конструкционных полимеров. В последнем случае можно отметить две различных тенденции. С одной стороны, все чаще появляются сообщения об изготовлении зубчатых колес для тракторов из капрона. Обрывки отслуживших свое рыболовных сетей, старые чулки и путанку капроновых волокон переплавляют и формуют в шестерни. Эти шестерни могут работать почти без износа в контакте со стальными, вдобавок такая система не нуждается в смазке и почти бесшумна. Другая тенденция — полная замена металлических деталей в редукторах на детали из углепластиков. У них тоже отмечается резкое снижение механических потерь, долговременность срока службы.
Еще одна область применения полимерных материалов в машиностроении, достойная отдельного упоминания, — изготовление металлорежущего инструмента. По мере расширения использования прочных сталей н сплавов все более жесткие требования предъявляются к обрабатывающему инструменту. И здесь тоже на выручку инструментальщику и станочнику приходят пластмассы. Но не совсем обычные пластмассы сверхвысокой твердости, такие, которые смеют поспорить даже с алмазом. Король твердости, алмаз, еще не свергнут со своего трона, но дело идет к тому. Некоторые окислы (например из рода фианитов), нитриды, карбиды, уже сегодня демонстрируют не меньшую твердость, да к тому же и большую термостойкость. Вся беда в том, что они пока еще более дороги, чем природные и синтетические алмазы, да к тому же им свойствен “королевский порок” — они в большинстве своем хрупки. Вот и приходится, чтобы удержать их от растрескивания, каждое зернышко такого абразива окружать полимерной упаковкой чаще всего из фенолформальдегидных смол. Поэтому сегодня три четверти абразивного инструмента выпускается с применением синтетических смол.
Таковы лишь некоторые примеры н основные тенденции внедрения полимерных материалов в подотрасли машиностроения. Самое же первое место по темпам роста применения пластических масс среди других подотраслей занимает сейчас автомобильная промышленность. Десять лет назад в автомашинах использовали от 7 до 12 видов различных пластиков, к концу 70-х годов это число перешагнуло за 30. С точки зрения химической структуры, как и следовало ожидать, первые места по объему занимают стирольные пластики, поливинилхлорид и полиолефины. Пока еще немного уступают им, но активно догоняют полиуретаны, полиэфиры, акрилаты и другие полимеры. Перечень деталей  автомобиля,  которые  в  тех  или  иных  моделях  в  наши  дни из
готовляют из полимеров, занял бы не одну страницу. Кузова и кабины, инструменты и электроизоляция, отделка салона и бамперы, радиаторы и подлокотники, шланги, сиденья, дверцы, капот. Более того, несколько разных фирм за рубежом уже объявили о начале производства цельнопластмассовых автомобилей. Наиболее характерные тенденции в применении пластмасс для автомобилестроения, в общем, те же, что и в других подотраслях. Во-первых, это экономия материалов: безотходное или малоотходное формование больших блоков и узлов. Во-вторых, благодаря использованию легких и облегченных полимерных материалов снижается общий вес автомобиля, а значит, будет экономиться горючее при его эксплуатации. В-третьих, выполненные как единое целое, блоки пластмассовых деталей существенно упрощают сборку и позволяют экономить живой труд.
Кстати, те же преимущества стимулируют и широкое применение полимерных материалов в авиационной промышленности. Например, замена алюминиевого сплава графитопластиком при изготовлении предкрылка крыла самолета позволяет сократить количество деталей с 47 до 14, крепежа — с 1464 до 8 болтов, снизить вес на 22%, стоимость — на 25%. При этом запас прочности изделия составляет 178%. Лопасти вертолета, лопатки вентиляторов реактивных двигателей рекомендуют изготовлять из поликонденсационных смол, наполненных алюмосиликатными волокнами, что позволяет снизить вес самолета при сохранении прочности и надежности. По английскому патенту № 2047188 покрытие несущих поверхностей самолетов или лопастей роторов вертолетов слоем полиуретана толщиной всего 0,65 мм в 1,5-2 раза повышает их стойкость к дождевой эрозии. Жесткие требования были поставлены перед конструкторами первого англо-французского сверхзвукового пассажирского самолета “Конкорд”. Было рассчитано, что от трения об атмосферу внешняя поверхность самолета будет разогреваться до 120-150° С, и в то же время требовалось, чтобы она не поддавалась эрозии в течение по меньшей мере 20000 часов. Решение проблемы было найдено с помощью поверхностного покрытия защиты самолета тончайшей пленкой фторопласта.

Полимерная оболочка космических ракет из углепластика

Оболочку двигателя ракет изготавливают из углепластика, наматывая на трубу ленту из углеволокна, предварительно пропитанную эпоксидными смолами. После отверждения смолы и удаления вспомогательного сердечника получают трубу с содержанием углеволокна более двух третей, достаточно прочную на растяжение и изгиб, стойкую к вибрациям и пульсации. Остается начинить заготовку ракетным топливом, приладить к ней отсек для приборов и фотокамер, и можно отправлять ее в полет.
Пластмассовый шлюз
На одном из каналов в районе Быгдощи установлен первый в Польше (а вероятно, и первый в мире) цельнопластмассовый шлюз. Работает шлюз безукоризненно. Пластмассовые элементы рассчитаны на более чем 20-летний срок эксплуатационной службы. Конструкции же из дубовых балок приходилось менять каждые 6 лет.

7381 всего просмотров, 8 просмотров за сегодня

Комментарии к записи Полимеры в напольных покрытиях отключены

Полимеры в напольных покрытиях

| ИНФОРМАЦИЯ ПО ТЕМЕ | 21.11.2008

Полы являются важным элементом внутренней отделки зданий. В жилых, общественных и промышленных зданиях полы устанавливаются на грунте или перекрытиях. В настоящее время имеется большое разнообразия покрытий полов, а так же разнообразны свойства полов и их технические и эксплуатационные характеристики. К полам предъявляют ряд конструктивных, эксплуатационных, санитарно-гигиенических и художественно-эстетических требований в зависимости от назначения и характера помещения. Полы любых помещений должны хорошо сопротивляться механический воздействиям- истиранию, удару, продавливанию, обладать достаточной жесткостью, быть гладким, но не скользящим, бесшумным при ходьбе, малое количество швов и легко очищаться и др.1. Покрытия для пола.
Покрытия для современного пола могут быть самыми разнообразными и состоят они в основном из верхнего, «механического» и эластичного слоев, и основания. Материалы, из которых изготавливают эти слои и формируют индивидуальные особенности покрытия.

Покрытия из дерева, паркет или деревянная доска

Для устройства деревянных полов часто используется доска, изготавливаемая из массива твердых пород дерева. Высокая стабильность геометрических размеров доски обеспечивается за счет применения специальных технологий сушки древесины.
Последнее время очень популярным стало использование паркета. Многослойная паркетная доска по своим геометрическим размерам напоминает половые доски, но благодаря рисунку планок верхнего слоя, пол, выложенный из них, имитирует покрытие из штучного паркета.

Покрытие линолеумом и пвх

Натуральный линолеум чаще используется как составная часть системы, которая состоит из двух функциональных слоев — линолеума и эластичного слоя. Натуральный линолеум не боится воды, грязи, вмятин и царапин.
Основа многослойного покрытия из ПВХ, играет роль мощного амортизатора. Для равномерного распределения нагрузки и стабилизации линейных деформаций, возникающих в полотнищах, применяется армирующая сетка из нетканого стекловолокна. Для удобства эксплуатации покрытие может быть обработано составом бактерицидного и фунгицидного действия.

Ворсовые покрытия

В качестве напольных покрытий очень можно использовать и текстильные материалы — тафтинговые, иглопробивные, велюровые. Они также применяются в сочетании с эластичной амортизирующей подложкой. Эти покрытия по своим техническим данным сочетанию цветов резинового гранулята и ковра создают великолепный эстетический эффект. Плюс этих ковровых покрытий — простота укладки.

Каучуковые покрытия

Группа каучуковых покрытий это — каландрированные вулканизированные покрытия на основе натуральной и синтетической или только синтетической резины, а также покрытия из полиуретана с ЭПДМ-гранулятом (рулонные или монолитные). Каландрированные вулканизированные покрытия являются прочными, упругими, пожаростойкими, определенные серии антистатичны. Производятся в двух форматах — в рулонах и плитках, с ровной или рельефной поверхностью. Покрытия кладутся свободно, либо приклеиваются. Основание не требует дополнительной обработки, но обязательно должно быть ровным, сухим и прочным. Каучуковые покрытия можно использовать на открытых площадках (серии со специальными добавками) и в помещении.

Промышленные полы

Промышленный пол характеризуется, прежде всего, хорошей химической стойкостью, прекрасными механическими качествами, экологической чистотой, легкость в уборке и обслуживании. Его главным элементом конструкции является бетонное основание, распределяющее нагрузки на грунт.
При необходимости можно легко выровнять поверхность основания промышленного пола или создать необходимые уклоны по основанию специальной стяжкой. После чего, основание промышленного пола можно гиодроизолировать и нанести защитное покрытие.
Эффективное звукопоглощение, отсутствие трещин, стыков и швов. Промышленные полы соответствуют самым высоким санитарно–гигиеническим требованиям, предъявляемым к современному производству. Сферы их применения очень разнообразны: пищевая, химическая, фармацевтическая промышленность, лифты и др. Они обеспечивают износостойкость, и химическую стойкость к воздействию агрессивных сред защищаемых поверхностей в течение длительных сроков эксплуатации.

Наливные полы

Наливные полы представляют собой специальный раствор, который при выливании практически самостоятельно образует идеально гладкую горизонтальную поверхность, отличающуюся особой прочность и долговечностью. Поэтому наливные полы может положить даже новичок.
Самыми распространенными наливными полами являются эпоксидные (на основе эпоксидных смол), полиуретановые (на основе полиуретановых смол) и цементные (на основе строительной смеси).
Все эти наливные полы имеют великолепные эксплуатационные характеристики и внешний вид. Наливные полы обладают рядом специфических свойств, таких, например, как устойчивость к воздействию химреактивов, к стиранию (в том числе в условиях повышенной влажности).

Полиуртановые наливные полы

Полиуретановые наливные полы считаются очень прочными и эластичными, прекрасно противостоят химическим воздействиям. Но следует учитывать, что до полного застывания эти наливные полы плохо переносят влагу и могу покрыться пузырьками.

Эпоксидные наливные полы

Эти наливные полы представляют собой своеобразный защитный щит толщиной от 0,5 до 5 мм, особенно эффективный для бетонных, каменных, плиточных, металлических и даже деревянных оснований.

Тонкослойные и многослойные эпоксидные полы

Эпоксидные полы используются для предотвращения пыления и защиты бетонных и цементно-полимерных полов от воздействия агрессивных сред, а так же придания полу декоративности. [ 4 ]
Тонкослойные эпоксидные полы недороги и достаточно распространены в рамках области своего применения. Толщина полов невелика (до 0,5 мм), в связи с этим неизбежно их истирание  с течением времени.
Срок службы тонкослойных эпоксидных полов — он невелик (до 2-4 лет), однако невысокая цена позволяет производить их систематическое обновление.
Для устройства эпоксидных полов используются эпоксидные смолы с различными химическими добавками. Эпоксидные полы, толщиной до 0,5 мм, рекомендуется применять в сухих помещениях с низкими механическими воздействиями.
Многослойные эпоксидные полы характеризуются высокой твердостью и прочностью на истирание, химической стойкостью, многообразием цветового решения.
Наливные эпоксидные полы (толщиной от 2,5 до 4 мм) имеют большой срок службы (до 10-20 лет) и окупают финансовые вложения за счет длительного срока эксплуатации.
Добавляя в эпоксидную смолу специальные компоненты, можно, в зависимости от технических требований к поверхности, придать напольному покрытию ряд дополнительных свойств: повышенную кислотостойкость, антистатичность, электропроводность. Эпоксидные полы с кварцевым наполнителем обладают еще большей прочностью, износостойкостью, невосприимчивостью к избытку воды и устойчивостью к мытью поверхности под давлением.
Время полной полимеризации эпоксидных полов 7 дней, работы по их нанесению выполняются при температуре основания от + 10 °C. [ 4 ]

Наливное двухкомпонентное цветное эпоксидное дезактивируемое покрытие

Наливное полимерное покрытие (толщина до 3.0 мм). Выдерживает радиоактивное излучение, отвечает требованиям пожарной безопасности на объектах ядерной энергетики.
Выдерживает средние и высокие механические и химические нагрузки, движение тележек и техники на резиновом и пластиковом ходу со средней и сильной интенсивностью. Стойко к ударам.
Стойко к проливам жидкостей до 120оС, агрессивным средам, топливу и ГСМ. Высокая ремонтопригодность. Возможна интенсивная уборка моющими средствами.
Конструкция наливного пола
Основание: подготовленное бетонное основание, с классом прочности не ниже В22,5 (М300), возрастом не менее 28 суток и влажностью не более 4 масс %.  Высокопроникающая эпоксидная грунтовка с просыпкой обогащенным кварцевым песком. Цветное двухкомпонентное наливное эпоксидное дезактивируемое покрытие не содержащее растворитель с добавлением кварцевого песка
Срок службы покрытий до 15 лет. Области применения: Атомные электростанции, научно-технические центры. . [ 4 ]
6.Требования предъявляемые к промышленному полу.
В медицинских помещения крайне важно при выборе покрытия монолитность, герметичность и устойчивость к  влажной уборке.
Долговечность, при правильной эксплуатации и грамотном подборе типа пола сроки службы может достигать 20 и более лет.
Складские терминалы, производственные помещения, помещения для персонала и другие помещения на сегодняшний день важно исключить пыление бетонного основания.
Практически нет ни одной отрасли деятельности человека, где бы «пыление» основания допускалось и не мешало работе.
Заводам работающим со щелочами, кислотам, нефтепродуктам и другим химически активным составам полы должны иметь высокую химическую стойкость.
Стойкость полов к ударным и вибрациям от работающих станков и другого оборудования, от падения тяжелых предметов, сдвигов ручных тележек на резиновом или пластиковом ходу. Примером могут служить современные типографии, в которых существуют все вышеперечисленные виды нагрузок.
В процессе эксплуатации всех типов напольных покрытий очень остро встает вопрос о возможности быстрой и качественной машинной уборки помещений.
Все применяемые покрытия для пола должны иметь соответствующие сертификаты Госсанэпидемслужбы РФ и рекомендованы к применению НИИ Гигиены. [ 1, 41 ]

Напольные покрытия

Напольные покрытия должны быть качественными, прочными, долговечными, обладать хорошими акустическими свойствами и, конечно же, эстетически красивы. Напольные покрытия можно разделить на следующие виды:
— деревянные
— ламинированные
— плиточные
— полы из полимерных материалов

Ламинированные напольные покрытия

Ламинированные напольные полы являются одним из перспективных видов напольных покрытий. Такое напольное покрытие, при относительной дешевизне, выглядит очень декоративно. Кроме того, к поверхности ламинатных панелей не прилипает пыль и грязь, пол несложно содержать в чистоте. Ламинированные напольные покрытия имеют и один существенный недостаток — они недолговечны.

Плиточные напольные покрытия

Этот вид напольных покрытий является одним из самых дорогостоящих. Ведь для покрытия пола производится специальная напольная плитка. Это напольное покрытие достаточно прочное, очень декоративное — выпускается в разнообразных цветовых решениях, имитируя мрамор, камень, кирпич и старую кладку.

Напольные покрытия из полимерных материалов

Они не зря считаются самыми популярными. Ведь эти напольные покрытия из линолеума и ковровых покрытий уже давно и надолго вошли в наш обиход. Большую популярность они заслужили простотой укладки, легкостью замены и удобством в уборке.
Такие напольные покрытия поражают разнообразием цветовых решений и фактурой. Кроме того, они декоративны и износостойки.
Рассмотри каждый из видов напольных покрытий подробнее.
8.Линолеум.
Линолеум — это напольное покрытие, состоящее преимущественно из натурального сырья. Линолеум не дорогой материал, легко укладывается, важно и то, что после укладки сохраняет свои размеры. Линолеум легко очищается от пыли, поэтому пригоден для людей с нарушениями дыхательной системы и аллергией. Сухая уборка для него по эффективности сопоставима с влажной.
Линолеум, по химическому составу можно разделить на две разновидности: натуральный линолеум и линолеум ПВХ. [ 5 ]

Наливное двухкомпонентное цветное эпоксидное дезактивируемое покрытие

Наливное полимерное покрытие (толщина до 3.0 мм). Выдерживает радиоактивное излучение, отвечает требованиям пожарной безопасности на объектах ядерной энергетики.
Выдерживает средние и высокие механические и химические нагрузки, движение тележек и техники на резиновом и пластиковом ходу со средней и сильной интенсивностью. Стойко к ударам.
Стойко к проливам жидкостей до 120оС, агрессивным средам, топливу и ГСМ. Высокая ремонтопригодность. Возможна интенсивная уборка моющими средствами.
Конструкция наливного пола
Основание: подготовленное бетонное основание, с классом прочности не ниже В22,5 (М300), возрастом не менее 28 суток и влажностью не более 4 масс %.  Высокопроникающая эпоксидная грунтовка с просыпкой обогащенным кварцевым песком. Цветное двухкомпонентное наливное эпоксидное дезактивируемое покрытие не содержащее растворитель с добавлением кварцевого песка
Срок службы покрытий до 15 лет. Области применения: Атомные электростанции, научно-технические центры. . [ 4 ]

Требования предъявляемые к промышленному полу:

В медицинских помещения крайне важно при выборе покрытия монолитность, герметичность и устойчивость к  влажной уборке.
Долговечность, при правильной эксплуатации и грамотном подборе типа пола сроки службы может достигать 20 и более лет.
Складские терминалы, производственные помещения, помещения для персонала и другие помещения на сегодняшний день важно исключить пыление бетонного основания.
Практически нет ни одной отрасли деятельности человека, где бы «пыление» основания допускалось и не мешало работе.
Заводам работающим со щелочами, кислотам, нефтепродуктам и другим химически активным составам полы должны иметь высокую химическую стойкость.
Стойкость полов к ударным и вибрациям от работающих станков и другого оборудования, от падения тяжелых предметов, сдвигов ручных тележек на резиновом или пластиковом ходу. Примером могут служить современные типографии, в которых существуют все вышеперечисленные виды нагрузок.
В процессе эксплуатации всех типов напольных покрытий очень остро встает вопрос о возможности быстрой и качественной машинной уборки помещений.
Все применяемые покрытия для пола должны иметь соответствующие сертификаты Госсанэпидемслужбы РФ и рекомендованы к применению НИИ Гигиены. [ 1, 41 ]

Линолеум

Линолеум — это напольное покрытие, состоящее преимущественно из натурального сырья. Линолеум не дорогой материал, легко укладывается, важно и то, что после укладки сохраняет свои размеры. Линолеум легко очищается от пыли, поэтому пригоден для людей с нарушениями дыхательной системы и аллергией. Сухая уборка для него по эффективности сопоставима с влажной.
Линолеум, по химическому составу можно разделить на две разновидности: натуральный линолеум и линолеум ПВХ. [ 5 ]

Линолеум натуральный

Натуральный линолеум производиться из льняного масла, древесной смолы, древесной муки, порошка известняка, цветных и белых пигментов, джутовой ткани.
Оно долговечен, экологически чист, декоративен, огнестоек и не способствует распространению пламени в случае пожара. Благодаря льняному маслу линолеум обладает бактерицидными свойствами и не накапливает электростатический заряд. Натуральный линолеум не выгорает, не меняет цвет и структуру со временем, устойчив к неконцентрированным кислотам, этиловому спирту, жирам, но разрушается при длительном воздействии щелочи.  [ 5 ]

Линолеум ПВХ

Такой линолеум просто обязан иметь гигиенический сертификат. Ведь его основа это — стекловолокно. Кроме того, такой линолеум пропитывается пастой ПВХ, а на его поверхность при помощи больших печатных цилиндров с гравировкой наносится рисунок. Используется до 6 красок. С изнанки на стекловолокнистую основу линолеума наносят подложку. Она может быть джутовой, тканевой, полиэфирной или из вспененного ПВХ.
По мнению специалистов, оптимальна вспененная подложка для линолеума, должна иметь те же показатели температурного расширения, что и лицевой слой. Это позволяет избежать деформаций поверхности линолеума при нагреве. Более качественным является линолеум, у которого подложка нанесена механическим, а не химическим способом. [ 5 ]

Противоскользящий линолеум

Противоскользящие покрытия , т.е. безопасными покрытиями. Противоскользящий эффект достигается за счет добавления в поверхностный слой кварцевой или карборундовой крошки, а также за счет рельефной поверхности материала. Используются в помещениях, где вероятно попадание на пол воды и других жидкостей: бассейнах, лабораториях, кухнях, транспорте. [ 5 ]

Гомогенный линолеум

Гомогенный линолеум — однородный по структуре материал, в котором рисунок пронизывает всю толщину покрытия, поэтому даже при неравномерном износе материала внешний вид его остается без изменений. Такие  покрытия используются преимущественно в местах с высокой проходимостью, т.е. там, где материал подвержен интенсивному изнашиванию и высок риск механических повреждений. Особенность исключительная износостойкость, особая прочность, пригодность для стульев на колесиках, простота и гигиеничность заварки швов, гибкость — отсюда легкость формирования плинтусов, пригодность для полов с обогревом. [ 5 ]

Токопроводящий линолеум

Свойства Marmoretto LCH , Linodur LCH, Contour LG и др. данных покрытий направлены на ‘борьбу’ со статическим электричеством, которое может вызывать помехи в работе точных приборов. Рекомендуется для компьютерных залов, операционных, диспетчерских где используется точная электронная аппаратура.
Для защиты от электростатического разряда в помещениях, укладывают полы специальной конструкции для отвода статического электричества, а также напольные покрытия с электропроводящими свойствами. Такие покрытия чаще всего подразделяют на три группы, в зависимости от их электрического сопротивления:
— антистатические покрытия или антистатики – не более 10 9 Ом ;
— токорассеивающие (электрорассеивающие) покрытия  — 10 7 — 10 8 Ом;
— токопроводящие (электропроводные) покрытия  — 10 4 — 10 6 Ом.
Для придания покрытию токорассеивающих свойств в материал вводятся специальные добавки (например, частицы углерода). Токопроводящие покрытия благодаря графитовым вставкам обеспечивают постоянство токопроводности материала, независимо от влажности помещения.
При укладке специальных покрытий необходимо четко руководствоваться рекомендациями производителя и использовать только указанные в техническом описании покрытия клеи (контактные или электропроводящие) и дополнительные материалы (медные ленты, и т.п.). [ 5 ]8.6.Звукопоглощающий линолеум.
Акустические покрытия – линолеум, обладающий шумопоглощающими свойствами за счет более толстой, чем у стандартных коллекций вспененной подложки. Применяется в помещениях с особыми требованиями по звукоизоляции. Такие материалы обладают также хорошими амортизационными показателями. [ 5 ]

1993 всего просмотров, 2 просмотров за сегодня

Комментарии к записи Пластики в автомобилестроении отключены

Пластики в автомобилестроении

| ИНФОРМАЦИЯ ПО ТЕМЕ | 21.11.2008

Применение пластмасс(пластиков) в конструкции автомобилей приобретает всй более широкие масштабы.Это объясняется в первую очередь тем, что по ряду показателей – плотности, коррозионной стойкости, антифрикционным и электротехническим, а также технологическим свойствам – пластики значительно превосходят традиционные материалы, используемве при изготовлении автомобиля.За последние 10 лет произошли принципиальные сдвиги в области применения пластмасс в автомобилестроении.Ранее из пластиков изготавливали детали только электротехнического, декоративного назначения.

Основные факторами, обусловливающими значительное внедрение пластмасс в конструкцию автомобилей, являются:
1.  Во-первых, машина становится легче, а это означает, что снижается расход топлива.
2. Во-вторых, открывается возможность для новых конструкционных решений, поскольку термопластичные полимеры легко поддаются переработке и, следовательно, позволяют воплотить любые дизайнерские идеи. Благодаря этому можно получать детали самых хитроумных форм и цветов без дополнительных операций по механической обработке и окраске.
3.  В-третьих, применение пластиков помогает не только отказаться от дорогостоящих цветных металлов и нержавеющих сталей, но и сократить энерго- и трудозатраты в процессе производства, а значит, снизить стоимость автомобиля.
4.   В-четвёртых, повышение долговечности и эксплуатационных характеристик автомобиля
Пластическими массами (пластмассами, пластиками) принято называть материалы, представляющие собой композицию полимера или олигомера с различными ингредиентами, находящуюся при формовании изделий в вязкотекучем или высокоэластическом состоянии, а при эксплуатации — в стеклообразном (аморфном) или кристаллическом состоянии. В качестве ингредиентов могут входить наполнители- тальк, каолин, слюда, древесная мука, стеклянные, органические, углеродные и др. волокна;   пластификаторы, отвердители, стабилизаторы и т.д. По характеру связующего вещества пластики подразделяются на: а) термопластичные пластмассы (термопласты), получаемые на основе термопластичных полимеров,  и б) термореактивные пластмассы (реактопласты), т.е. неразмягчающиеся.

Термопластичные пластмассы (термопласты)

В настоящее время в конструкции автомобилей применяются разнообразные полимеры: полиолефины, ПВХ, полистирол, фторопласты, полиметилакрилат, полиамиды, полиформальдегид, поликарбонат, стеклопластики, фенольные пластики, полиуретаны, этролы,  аминопласты,  волокниты,  текстолиты  и др. Самое главное преимущество пластиков в том, что они обладают комплексом свойств, необходимых для конкретного конструкционного элемента А от того, насколько соответствует материал условиям эксплуатации, зависит надежность детали и, в конечном итоге, безопасность автомобиля, а также комфорт водителя и пассажиров
Для пластиков характерны следующие свойства:
1. низкая плотность(обычно 1,0-1,8 г/см , в некоторых случаях до 0,002-0,04 г/см)
2. высокая коррозионная стойкость.Пластмассы не подвержены электрохимической коррозии,на них не действуют слабые кислоты и щёлочи
3. высокие диэлектрические свойства
4. механические свойства широкого диапозона.В зависимости от природы выбранных полимеров и наполнителей пластики могут быть твёрдыми и прочными или же гибкими и упругими.Ряд пластиков по своей механической почности превосходят чугун  и бронзу. При одной и той же массе пластмассовая конструкция может по прочности соответствовать сальной.
5. антифрикционные свойства. Пластики могут служить полноценными заменитлями антифрикционных сплавов(оловянистых бронз, баббитов и др.)Например полиамидные подшипники скольжения длительное время могут работать без смазки.
6. высокие теплоизоляционные свойства.Все пластики,как правило, плохо проводят теплоту.
7. высокие адгезионные свойства
8. хорошие технологические св-ва .Изделия из пластика изготавливают способами безотходной технологии-литьём, прессованием, формованием с применением невысоких давлений или в вакууме.

Полиолефины

Полиолефины — высокомолекулярные углеводородные алифатического ряда, получаемые полимеризацией соответствующих олефинов( этилена,пропилена, и т.д.). В этих полимерах удачно сочетаются механическая прочность, химическая стойкость, высокая морозостойкость, низкая газо- и влагопроницаемость, и хорошие диэлектрические показатели.
В автомобильной промышленности из полиолефинов широко применяются полиэтилены, полипропилены, а так же различные их модификации.

Полиэтилен— (-CH2-CH2-)n — высокомолекулярный продукт полимеризации этилена, который имеет макромолекулы линейного строения с небольшим числом боковых ответвлений.

Полиэтилен высокого давления — ПЭВД — Полиэтилен низкого давления — ПЭНД

Полиэтилен высокого давления (ПЭВД)- лёгкий,прочный, эластичный материал с низкой газо-, паропроницаемостью, хороший диэлектрик, отличается высокой хим. стойкостью к органическим растворителям, низким водопоглощением и отличной морозостойкостью.К недостаткам его можно отнести низкую теплопроводность, высокий коэффициент линейного расширения,низкие,по сравнению с другими полиолефинами, механические свойства и недостаточную стойкость к УФ-излучению. В автомобилестроении используются в основном следующие марки ПЭВД: 17703-010, 10703-020, 10903-020, 11503-035 (ГОСТ 16337-77) для изляции электропроводов и кабелей, в качестве заменителя стекла, для защиты металла от коррозии, для изготовления крышек подшипников, уплотнительных проеладок, детали вентиляторов и насосов,гайки, шайбы, колпачки для защиты резьбы, пробки топливных баков,трубки, шланги, бочки опрыскивателя ветрового стекла и расширителя.
Полиэтилен низког дваления(ПЭНД)- более прочный и жёсткий материал по сравнению с ПЭВД, механическая прочность его в 1,5-2 раза выше,чем у ПЭВД может эксплуатироваться в широком интервале температур. Хороший диэлектрик.Обладает высокой химической стойкостью.Нестоек к воздействию УФ-лучей.В автомобилестроении используют марки ПЭНД (по ГОСТ 16338-85):20908-040, 20708-016, 21008-075, 20608-012).Из ПЭНД изготавливают педали привода акселератора, бачки главного цилиндра тормоза и сцепления, оболочки внутреннего заднего троса привода ручного тормоза, втулки крепления уплотнения, крыльчатки, корпус лампы распределителя заднего отопитнля,коробы вентиляции передка.

Полипропилен (-CH2-CH-) n CH3 – продукт полимеризации пропилена при низком давлении.По сравнению с полиэтиленом полипропилен имеет более высокую механическую прочность и жёсткость, большую теплостойкость и меньшую стойкость к старению.Имеет хорошие химические и диэлетрические свойства.Разрушающее напряжение при растяжении достгает 25-4- МПа. Недостатком полипропилена является его невысокая морозостойкость (-20 С).В автомобилестроении полипропилен применяется для изготовления колец и прокладок изолирующих пружин подушки опоры двигателя, расширительного бачка,чехла защитного рычага привода ручного тормоза, крышки и корпуса блока предохранителей, для антикоррозионной фетеровки резервуаров, элетроизоляционных деталей, а так же изготоаления деталей применяемых при работе в агрессивных средах, корпусные детали автомобилей и корпуса аккумуляторов, прокладки,
фланцы, корпуса воздушных фильтров, конденсаторы, вставки демпфирующих глушителей, зубчатые и червячные колёса,  ролики, подшипники скольжения, фильтры масляных и воздушных систем, рабочие детали вентиляторов, насосов, уплотнения, кулачковые механизмы, изоляция проводов и пружин.
Полистирольные пластики.
Полистирольные пластики – полимеры, полученные полимеризацией стирола или сополимеризацией этого мономера с другими мономерами.Полистирол,т.е. полимер, полученный полимеризацией стирола, обладает высокой водостойкостью, прекрасными диэлектрическими свойствами, хорошей химической стойкостью.Основными недостатками полистирола:  низкая атмосферостойкость, невысокая термическа стойкость, склонность к растрескиванию, низкие прочностные свойства.Поэтому чистый полистирол не применяется в конструкции автомобиля.Широкое применение находят сополимеры стирола – АБС-тройной сополимер акрилонитрилбутадиена и стирола.
Сополимеры АБС, или АБС-пластики,  обладает высокой механической прочностью, достаточной тепло-, морозо- и атмосферостойкостью.Они стойки к воздействию бензина и смазочных масел.Детали из АБС-пластика имеют хороший декоративный вид.
В автомобильной промышленности применяются для изготовления кожуха вентилятора отопителя, кожух облицовочногоьвала руля, решётку радиатора, кожух радиатора отопителя,корпу сопла, ручки и заслонки воздуховодов, облицовки стоек,дверей, боковины.

Поливинилхлорид

Поливинилхлориды (ПВХ) – представляют собой высокомолекулярные продукты  полимеризации винилхлорида, содержащие до 56.8% связанного хлора.Это обеспечивает им пониженную горючесть.ПВХ способны пластифицироваться различными пластификаторами, что позволяет получить на их основе как жесткие, так и эластичные материалы.Пластмассы на основе ПВХ можно разделить на 2 группы:
Содержащие пластификаторы: Пластикат ПВХ Не содержащие пластификаторы:  Винипласт
Пластикат ПВХ – получают смешением ПВХ с пластификаторами, которые снижают температуру стеклования ивязкого течения материала. С увеличением содержания пластификатора повышается морозостойкость, возростает относительное разтяжение при удлинении, но понижается механическая прочность, ухудшаются диэлектрические свойства.В автомобилестроении применяются для водо-, бензо-,антифризостойких гибких трубок, изолирующих прокладок, элементы насосов и вентиляторов .
Винипласты —  жёсткие пластмассы на основе ПВХ – получают смешением ПВХ со стабилизаторами и наполнителями.Материал имеет достаточно высокие механические свойства, хорошую химическую, водо- и грибостойкость.Недостатком является невысокая теплостойкость и низкая ударопрочность. В автомобилестроении винипласт приминяется для изоляционных кожухов,прокладок, вибропоглощающих материалов.
Фторопласты – полимеры фторпроизводных этиленового ряда.Своим внешним видом и поверхностью полимеры напоминыют парафин, имеют очень низкий,по сравнению с большинством веществ, коэффициент трения. Имеют прочность при растяжении 15-35 МПа , при изгибе 10-15 МПА,  относительное удлинение при разрыве 250-350% .
Наиболее широкое распостранение получил фторопласт-4, или политетрафторэтилен(тефлон).Характерезуются высокой плотностью(2,1-2,3г/см), термо- и морозостойкостью.Интервал рабочих температур при эксплуатации изделий из фторопласта-4 составляет от-269 до 260 С.Фторопласт-4 имеет хорошие диэлектрические свойства и высокую коррозионную стойкость.По химстойкости фторопласт-4 превосходит все известные материалы, включая золото и платину. Он стоек к воздействию всех минеральных и органических щелочей, кислот.При температуре 260 С невзрывоопасен.В автомобилестроении фторопласт-4 применяется   для изготовления подшипников скольжения без смазок.Для уменьшения износа подшипника во фторопласт вводят 15-30% наполнителя(графита, дисульфита молибдена, стеклянного волокна).Так же фтолропласт применяется  для изготовления тепло- и морозостойких деталей(втулок, пластин,дисков, прокладок, сальников, клапанов), для облицовки внутренних поверхностей различных криогенных емкостей.

Полиамиды (ПА)

Полиамиды – представляют собой высокомолекулярные полимеры, содержащие в основной цепи макромолекулы амидную группу.Соотношение  метиленовых  и амидных групп в составе ПА определяет такие основные свойства полимера, как температура плавления, водопоглощение, эластичность, морозостойкость.
Удачное сочетание высокой механической прочности и малой плотности с хорошими антифрикционными и диэлектрическим свойствами, химической стойкостью к маслам и бензину делают ПА одним из важнейших конструкционных материалов. Детали из ПА выдерживают нагрузки, близкие к нагрузкам , допустимым для цветных металлов и сплавов. Исследование антифрикционных свойств ПА, особенно наполненные, значительно превосходят фторопласты, полиформальдегид и поликарбонат.При этом, чем выше давление, тем меньше коэффициент трения ПА.Данные о зависимости динамического коэффициента трения ПА-6 и ПА-610 по стали от состояния поверхности трения и нагрузки(скорость 1,17 см/с) приведены  Значения коэффициентов трения некоторых ПА по стали приведены ниже:
Для изготовления автомобильных деталей нашли применение следующие ПА и их стеклонаполненные модификации – ПА-610, ПА-12, ПА-6, ПА-66, стеклонаполненные.
ПА-610 представляет собой продукт поликондесации соли СГ (соли себациновой кислоты с гексаметилендиамином.)По значению показателя текучести расплава и модуля упругости он превосходит практически все термопласты, а  сочетание небольшого водороглощения с хорошими прочностными свойствами и тепломорозостойкостью делает возможным использования ПА-610 в ответственных деталях антиырикционного назнвчения.Однако применение ограничено его высокой стоимостью. Из ПА-610 изготовляют методом литья под давлением вкладыши и втулки опорных тяг рулевой трапеции, ручки фиксаторов шарнира, вкладыши и рычаги управления коробкой передач, фильтр топливного насоса, зубчатые передачи, уплотнительные устройства, муфты,подшипники скольжения, лопасти винтов,стойкие к действию щелочей, масел, а так же антифрикционные покрытия металлов и др.  втулки и вкладыши.
ПА-12 – продукт гидролитической полимеризации додекалактама в присутствии кислых катализаторов. Этот материал имеет небольшую плотность, отличается незначительным водопоглощением. Свойства и размеры изделий из него отличаются сиабильнотью. ПА-12 хорошо работает на знакоперменный изгиб, это самый эластичный из рассматриваемых ПА, имеет хорошие антифрикционные и электрические свойства.К недостаткам материала относятся низкая теплостойкост по сравнению с другими ПА. Применяется для изкотовления скоб, хомутов,трубок, языков замка дверей, защёлок замков.
ПА-6 – продукт полимеризации капролактама.ПА-6 самый дешёвый материал из полиамидов.По механическим свойствам он превосходит другие ПА, имеет хорошие антифрикционные свойства.В автомобилестроении применяется для изготовления втулок валика педали сцепления, валика акселератора, изолирующей втулки рычага указателя и др. втулок, пластины опоры педали акселератора, пробки горловины бачков, поводка тяги выключения замка двери,опоры шаровой тяги привода управления коробки передачи, штуцеров,шайб,корпусов распределителя нагретого воздуха.
ПА-66(анид) – продукт поликондексации соли АГ (хим. название- полигексаметиленадипамид).По сравнению с другими ПА имеет высокую прочномть, хорошую теплостойкость,антифрикционные и электроизоляционные свойства.В автомобилестроении из ПА-66 выпускаются автомобильные детали типа втулок педалей сцепления и тормоза, распорных втулок, втулок дуги обивки крыши, ограничительных втулок, гаек-барашков крепления запасного колеса, шестерён корпуса привода спидометра,шайб, колодок контактных для наружных и внутренних штеккреов, каркасов катушек, пистонов крепления, вкладышей шарового кольца, скоб, вентиляторов системы охлождения.
Стеклонаполненные ПА, содержащие 20-30% стекловолокна. Механическая прочность и теплостойкость ПА, наполненных стекловолокном, увеличивается по сравнения с ненаполненными в 2-3 раза. Значительно возрастает и сопротивление ползучести, усталостная прочность, износостойкость.В автомобилестроении Стеклонаполненные ПА для изготовления деталей с жёстким размерными допусками, работающих в интервале температур от -60 до 150 С, а так же деталей, несущих нагрузки. Это – ограничители хода шестерни, рычаги включения привода, крыльчатки, шестерни, корпуса предохранителей, корпус клапана бензобака и карбюратора, крышки картера сцепления, бачки радиатора отопителяю, чашка нижняя шарнира наружного зеркпла, детали топливной аппаратуры,различные втулки.
Таблица№3. Физико-механические свойства ПА вышеуказанных модификаций.

Поликарбонат

Поликарбонат —  термопластичный полимер на основе дифенилолпропана и фостена, выпускаемый под названием дифлон.Поликарбонат характеризуется низкой водопоглощаемостьюи газонипроницаемостью, хоршими диэлектрическими свойствами, высокой жёсткостью, теплостойкостью и химической стойкостью,прозрачен, хорошо окрашивается.Стоек к световому старению и действию окислителей даже принагреве до 120 С, допускается при работе изделий в интервале от -100 до 135 С.Это один из наиболее удпропрочных термопластов, что позволяет использоватьего в качестве конструкционного материала, заменяющего металлы.В автомобилестроении из поликарбоната изготавливают шестерни, подшипники, корпуса,крышки,клапаны.
Полиформальдегиды(полиацетали)
Полиформальдегиды(ПФ) – это продукт полимеризации формальдегида и триоксана с диоксоланом(СТД).Они сочетают высокий модуль упругости при растяжении и изгибе с достаточно большой ударной вязкостью.По показателям долговременной прочности при растяжении и изгибе и по усталостной прочности эти материалы превочходят все другие термопласты , включая полиамиды, поликарбонаты.Теплостойкость при изгибе при высоких  нагрузках у образцов из ПФ выше, чем у других термопластов, включая ПА-610, а коэффициент трения по стали близок к этому показателю для ПА.Антифрикционные марки ПФ имеют коэффициент трения 0,15-0,20.Полиформальдегиды значительно превосходят ПА по водостойкости:при эксплуатации в водной среде механические свойства материалов изменяются незначительно.Эти материалы удачно сочетают хорошие электротехнические свойства с механической прочностью и водостойкостью.
При нормальных и пониженных температурах они устойчивы ко всем без исключения органическим растворителям, слабым кислотами основаниям.Полиформальдегиды имеют хорошую сырьевую базу и в перспективе являются интересным конструкционным материалом.В настоящее время стоимость ПФ высока, что ограничивает их применение.К недостаткам этих материалов  следует отнести невысокую стойкость к воздействию УФ-лучей и светостойкость.Основной метод переработки- литьё под давлением.
В автомобильной промышленности применяются полиформальдегиды марок ПФ-Л-1, ПФ-Л-2, ПФ-Л-3.Из них изготавливают корпуса жиклёра омывателя, поводок пружины замка капота, кольца распорные, втулки, кулачки, поршни, толкатели, корпуса клапанов, детали карбюратора(муфты и др.), топливных насосов, трубопроводов, ручки дверей, переключатели.
б)Термореактивные пластмассы (реактопласты)

Фенопласты

Фенопласты (фенольные пластики) — пластмассы основе фенолоформальдегидных смол.В зависимости от наполнителя фенопласты подразделяются на порошкообразные, волокнистые, слоистые материалы.Фенопласты, содержащие порошкообразные наполнители(древесную муку, минеральные наполнители.), наз. – пресс-порошками.Фенопласты, содержащие наполнитель в виде хлопчатобумажных волокон, наз. – волокнитами, а в виде стеклянных волокон – стекловолокнитами.Если фенопласты имеют в качестве наполнителя ткани,то – текстолиты, если бумагу — гетинаксами. Отличительной особенностью фенопластов является хорошие диэлектрические показатели, высокие механические свойства, низкое водопоглощение, хорошие химические свойства.В автомобилестроении для производства  деталей применяются следующие фенопласты:
Пресс-порошки типа О – общего назначения – рекомендованы для ненагруженных и неармированных деталей общего назначения, к механическим свойствам которых не предъявляются высокие требования. Из пресс-порошка типа О изготавливают держатели фланцев, изолирующие втулки, шайбы, ручки.
Пресс-порошки типа Вх – для изготовления деталей электротехнического назначения, работающих в условиях повышенной влажности и высоких температур.
Волокниты типа У-  Особенность изделий из Волокнит — высокая ударная
прочность, кроме того, они стойки к действию воды, минерального масла, бензина, слабых кислот и растворителей; разрушаются растворами щелочей, сильных кислот, хлора, применяются для изготовления деталей технического назначения, к которым предъявляются требования повышенной прчности на ударный и статический изгиб, кручение, например кожух радиатора отопителя, крышки аккумкляторов, втулок, шкивов, маховиков.
Стекловолокнит АГ-4В – отличаются высокой прочностью, тепло- и морозостойкостью, хорошей ударноу вязкостью и электротехническими свойствами.Из стекловолокнита изготавлиают кожух вентиляторв отопителя, крушку аккумуляторной батареи, корпус вентилятора отопителя задка, стакан фильтра.
Текстолиты — материалы с хорошими механическими, электротехническими и теплофизическими свойствами.Применение этого материала ограничено необходимиостью получения изделия из отпрессованной заготовки механической обработкой.Из текстолита изготавливают шестерни распределительного вала, крыльчатка водяног насоса, шайбы уплотнительные и изолирующие, кнопки клапанов топливного насоса, изолирующие покладки, а так же некоторые детали антифрикционного назначения. . Из текстолит-крошки изготовляют детали с хорошими механическими и антифрикционными свойствами (сальники, ролики, шестерни, втулки, вкладыши подшипников и др.).
Асбоволокниты – обладают хорошими фрикционными(тормозными) свойствами и теплостойкостью.
Дозирующие стекловолокниты —  по сравнению с материалом АГ-4В имеют улучшенные технологические свойства, и более однородны по механическим свойсвам. Из  дозирующих стекловолокнитов прессуют детали электроизоляционного назначения – кожухи вентиляторов, крышки аккумуляторных ботарей.

Перспективы применеия пластмасс в конструкции автомобиля

Применение пластиков в конструкции автомобиля позволяет снизить массу, улучшить эксплуатационные характеристики автомобиля, повысить его травмобезопасность и комфортабельность.В среднем в одном легковом автомобиле применяется 45кг пластмасс, в перспективе предусматривается увеличение этого количества до 80-110кг.В основном внедрение пластмасс в автомобиль происходит при разработке новых конструкций базовых моделей.Основным направлением расширения применения пластмасс в конструкции автомобиля является внедрение крупногабаритных наружних деталей кузова из композиционных полимерных материалов, обеспечивающих снижение массы и повышение долговечности за счёт коррозионной стойкости.Разработка высокопрочных композиционных материалов с полимерной матрицей и стеклянными, углеродными и другими волокнами позволила перейти к использованию их в нагруженных силовых деталях, таких как карданные валы, рессоры, обода колёс.
Таблица№6.Рекомендация по выбору полимерных материалов для изготовления основных узлов и деталей автомобиля.

22455 всего просмотров, 13 просмотров за сегодня

Комментарии к записи Виды полимерных материалов и смол отключены

Виды полимерных материалов и смол

| ИНФОРМАЦИЯ ПО ТЕМЕ | 21.11.2008

Пластмассы (пластики)—материалы на основе полимеров, находящиеся в период формования изделий в вязкотекучем или высокоэластическом состоянии, а при эксплуатации—в стеклообразном или кристаллическом. В пластмассе наряду с полимером могут содержаться наполнители, причем в термопластичные их вводят реже и в меньших количествах, чем в термореактивные. Поэтому понятия термопластичный полимер, «термопласт», «пластик», обычно совпадают.

Основой так называемых «ненаполненных» термопластов являются полимеры, структура которых почти полностью формируется при их синтезе в условиях специализированного химического производства. Возможности регулирования их свойств на стадии изготовления изделий состоят в несущественных изменениях структуры, путем отжига или ориентации, стабилизации и пластификации с помощью модифицирующих добавок, изменяющих их свойства. Такими добавками к полимерам являются:
· стабилизаторы, повышающие стойкость к термоокислительным процессам, воздействию излучения, микроорганизмов и т. п.;
· пластификаторы и эластификаторы, повышающие текучесть в вязкотекучем состоянии и эластичность в стеклообразном (ударопрочность);
· легирующие полимеры, изменяющие степень кристалличности, структуру и свойства матрицы;
· пигменты для окрашивания.
Один из основных признаков термопластов: наличие двух твердых состояний — стеклообразного и высокоэластического — и жидкого—вязкотекучего. Оба перехода—плавление и стеклование являются плавными, нерезкими, и механические свойства почти непрерывно и обратимо изменяются при изменении температуры.
Отмеченная выше особенность химической структуры термопластов определяет их свойства—гибкость цепей и возможность смены конформаций, что и объясняет существование в них нового высокоэластического состояния, характерного для широкого диапазона температур.
Первым термопластом, нашедшим широкое применение, был целлулоид—искусственный полимер, полученный путем переработки природного—целлюлозы. Он сыграл большую роль в технике, особенно в кинематографе, но вследствие исключительной пожароопасности (по составу целлюлоза очень близка к бездымному пороху) уже в середине XX в. ее производство упало почти до нуля.
Развитие электроники, телефонной связи, радио настоятельно требовало создания новых электроизоляционных материалов с хорошими конструкционными и технологическими свойствами. Так появились искусственные полимеры, изготовленные на основе той же целлюлозы, названные по первым буквам областей применения этролами. В настоящее время лишь 2 … 3% мирового производства полимеров составляют целлюлозные пластики, тогда как примерно 75%—синтетические термопласты, причем 90% из них приходится на долю только трех: полистирола, полиэтилена, поливинилхлорида.
Полистирол—неполярный полимер, широко применяющийся в электротехнике, сохраняющий прочность в диапазоне 210 … … 350 К
Благодаря введению различных добавок приобретает специальные свойства: ударопрочность, повышенную теплостойкость, антистатические свойства, атмосферостойкость, пенистость. Недостатки полистирола—хрупкость, низкая устойчивость к действию органических растворителей (толуол, бензол, четыреххлористый углерод легко растворяют полистирол; в парах бензина, скипидара, спирта он набухает).
Полистирол вспенивающийся широко используется как теплозвукоизоляционный строительный материал. В радиоэлектронике он находит применение для герметизации изделий, когда надо обеспечить минимальные механические напряжения, создать временную изоляцию от воздействия тепла, излучаемого другими элементами, или низких температур и устранить их влияние на электрические свойства (tg6, е), следовательно, — в бортовой и СВЧ-аппаратуре.
Полиэтилен—полимер с чрезвычайно широким набором свойств и использующийся в больших объемах, вследствие чего его считают королем пластмасс. Регулируя степень кристаллизации, условия синтеза и добавки, прочность полиэтилена можно варьировать в пределах 8 … ]5 ГПа, а относительное удлинение 500 … 100%. Полиэтилен обладает исключительно высокой стойкостью против химической деструкции: даже за 10… 12 лет эксплуатации прочность его снижается лишь на ?. Благодаря химической чистоте и неполярному строению полиэтилен обладает высокими диэлектрическими свойствами: его удельное сопротивление 1014 … 1016 Ом*см. tg =0,0005. Епр==30 МВ/м. Они в сочетании с высокими механическими и химическими свойствами обусловили широкое применение полиэтилена в электротехнике, особенно для изоляции проводов и кабелей.
Помимо полиэтилена общего назначения выпускаются его многие специальные модификации, среди которых: антистатический, с повышенной адгезионной способностью, светостабилизированный, самозатухающий, ингибитированный (для защиты от коррозии), электропроводящий (для экранирования).
Одним из наиболее прогрессивных методов обработки полиэтилена является радиационное сшивание, происходящее под действием пучков ускоренных электронов. Такое воздействие приводит к существенному увеличению прочности на растяжение и модуля упругости, твердости, термостойкости и возникновению эффектов памяти и термоусаживания. Эти эффекты находят все более широкое применение в технологии. Изделие, например трубку или пакет, облучают электронами, раздувают горячим воздухом при 423 К- Затем трубку насаживают на штуцер или в пакет, упаковывают продукцию. После этого достаточно небольшого нагрева, и полиэтилен, «вспомнив» первоначальную форму, дает большую усадку, в результате которой образуется прочное надежное соединение трубка—штуцер, а пакет плотно облегает продукцию. Достоинство радиационной обработки состоит в том, что она не требует больших затрат энергии и не загрязняет материал. Она применяется в кабельной промышленности и при изготовлении различных узлов РЭА.
Главный недостаток полиэтилена—сравнительно низкая нагревостойкость.
Фторопласт (политетрафторэтилен—ПТФЭ)—один из самых термостойких и холодостойких полимеров, сохраняет механическую прочность в интервале 3 … 600 К. Плотность — 2,2 … 2,5 г/см3, относительное удлинение 250 … 500%, температура разложения не менее 673 К; ТКЛР при температуре 293 К — 2,5*10-5 К-1; при Т==383 К — 1*10-4 К-1. Удельное сопротивление (1038 … 1020 Ом*см) мало зависит от влажности и температуры. Так, при Трабмах (573 К) оно снижается лишь в 100 … 1000 раз; tg фторопласта равен 0,0002, np=40 … 80 МВ/м. Исключительно высока его химическая стойкость, в том числе длительная к воздействию морского тумана, солнечной радиации, плесневых грибков. По отношению к большинству неорганических и органических реагентов он настолько пассивен, что методы испытаний на стойкость в этих средах отсутствуют. Фторопласт обладает также высокой радиационной стойкостью и применяется для изоляции проводов на атомных электростанциях. Такие провода можно использовать и в качестве нагревателей, погруженных непосредственно в растворы кислот и щелочей. Они не боятся попадания масел, керосина, гидравлических жидкостей при повышенных температурах и широко применяются для изоляции бортовых авиационных кабелей. Обладают они преимуществом и при эксплуатации в разреженной атмосфере, где условия теплоотвода ухудшены. У фторопласта незначительна зависимость диэлектрической проницаемости от температуры, поэтому он фазостабилен — не изменяет электрическую длину в широком диапазоне температур и частот. Это позволяет использовать его в РЭА с фазово-импульсной модуляцией, РЛС и измерительных фазочувствительных системах. Негорючесть фторопласта характеризуется тем, что он способен загораться только в чистом кислороде, а это резко отличает его, например, от полиэтилена; теплота сгорания невелика—в 10 раз меньшая, чем полиэтилена; плавления при горении нет, фторопласт в пламени лишь обугливается; при горении или тлении образуется немного дыма (но дым содержит ядовитый фторфосген, поэтому при температуре выше 773 К фторопласт опасен); фторопласт горит в открытом пламени, но после его удаления горение прекращается, т. е. он неспособен распространять горение. При нагреве в вакууме фторопласт не выделяет газообразных продуктов, и его можно использовать как подложки тонкопленочных ГИС. Эти качества свидетельствуют о том, насколько незаурядным материалом является фторопласт, а также и о том, чего в будущем можно ожидать от полимеров.
У фторопласта есть недостатки, которые вполне естественно продолжают его достоинства.

1. Вследствие химической пассивности он также и адгезионно инертен, т.е. трудно поддается склеиванию. Однако способы преодоления этой инертности уже найдены. Это либо обработка в расплаве окислителей при Т>370 К, либо в плазме тлеющего разряда в кислороде. Благодаря этому выпускаются фольгированные фторопластовые пленки и пленки с односторонним липким слоем.

2. В отличие от типичных термопластов фторопласт при повышении температуры не переходит в вязкотекучее состояние и его нельзя перерабатывать в экструдерах, так как вязкость его при 626 К (350°С) все еще высока—около 1010 Па-с. Поэтому пленку готовят значительно более дорогим методом строжки на прецизионных токарных станках.

3. Фторопласт обладает ползучестью и плохо работает под нагрузкой. Механические свойства его могут быть улучшены путем радиационного модифицирования и армирования стекловолокном.
Полиимид — новый класс термостойких полимеров, ароматическая природа молекул которых определяет их высокую прочность вплоть до температуры разложения, химическую стойкость, тугоплавкость. Полиимидная пленка работоспособна при 473 К (200°С) в течение нескольких лет, при 573 К—1000 ч, при 673 К—до 6 ч. Кратковременно она не разрушается даже в струе плазменной горелки. При некоторых специфических условиях полиимид превосходит по температурной стойкости даже алюминий. Так, если к пленке или фольге прикасаются нагретым стержнем и определяется температура, при которой образец разрушается за 5 с (температура нулевой прочности), то для алюминия она составляет 788 К, для полиимида—1088 К.

Полиимид, в отличие от фторопласта, легко подвергается травлению в концентрированных щелочах, что позволяет готовить сквозные отверстия в пленке. Таким методом получают электрические переходы при формировании многослойных коммутационных плат на полиимидной пленке. Чтобы использовать ее как подложку для вакуумного напыления тонкопленочных проводниковых слоев (обычно Cr—Си), необходима предварительная обработка — активация поверхности с целью преодоления ее адгезионной инертности- Активация представляет, по существу, частичную деструкцию или модификацию внешних слоев с образованием ненасыщенных адсорбционно-способных связей. Достигается это в результате воздействия концентрированного (около 250 г/л) раствора NaOH с добавкой жидкого стекла при 353 К (80 °С). Возможна и активация поверхности полиимида в плазме тлеющего разряда в атмосфере кислорода, однако такой обработки недостаточно для надежной металлизации, особенно если платы в процессе дальнейшей обработки и эксплуатации подвергаются изгибам. Полиимид вполне стабилен при нагреве в вакууме, поэтому его используют как подложки гибких тонкопленочных коммутационных плат (резистивные элементы на таких подложках не изготавливают). В отличие от фторопласта полиимид пригоден и для многослойных плат благодаря тому, что позволяет изготовлять переходные отверстия диаметром 70 … 100мкм.
Полиимид является слабополярным среднечастотным материалом, поскольку его tg=0,003. Полиимид обладает повышенным влагопоглощением, и, вероятно, поэтому диэлектрические потери уменьшаются с повышением температуры: так, при 493 К его tg=0,0006.

Полиимид выпускается в различных видах:

1. Пленка толщиной 8 … 100 мкм, в том числе фольгированная, предназначенная для гибких печатных плат, шлейфов и подложек тонкопленочных ГИС.
2. Лак ПАК, стойкий после высыхания при 470 … 520 К, ограниченно при 573 К, кратковременно при 670 К.
3. Пресс-материал для получения изделий горячим прессованием при 590 К и давлении 100 МПа.
4. Пенопласт (пенополиимид) с плотностью 0,8 … 2,5 г/см5, применяющийся в качестве тепло- и электроизоляционного материала для температур 90 … 520 К-
5. Стеклопластик на основе полиимида, стойкий до 670 К, и углепластик, не теряющий механической прочности при 550 К.
6. Изоляционная лента, стойкая при температуре до 500 К.

Недостаток полиимида—повышенное влагопоглощение (1 … 3% за 30 сут.), поэтому он нуждается в технологической сушке (особенно при изготовлении изделий из пресс-порошков) и защите.
Первыми реактопластами, полученными около 100 лет назад, были фенолформальдегидные смолы (ФФС). Компонентами этих смол являются фенол и формальдегид, реакция поликонденсации которых происходит при нагреве до 450-470 К. Известны два типа ФФС— резольные и новолачные, несколько отличающиеся по свойствам. Исходным сырьем для ФФС является каменный уголь, что и объясняет дешевизну и постоялый рост производства, особенно в виде теплоизоляционных пенопластов для строительной промышленности. В электронике ФФС широко применяются для изготовления слоистых пластиков, покрытий и красок (лак на основе ФФС называется бакелитовым), деталей электроизоляционной аппаратуры, сепараторов аккумуляторов и т. д.
Удельное сопротивление отвержденной ФФС — 1012 — 1013 Ом-см, tg= 0,015 при f=106 Гц, электрическая прочность 10 … 18 МВ/м, =10 … —11 (50 Гц) и=6 (106 Гц). Диапазон рабочих температур 210 … 470 К. Композиции на основе ФФС и рубленного углеродного волокна (углепрессволокнит) обладают повышенной нагревостойкостью — кратковременно до 800 К. Широко применяются в радиоэлектронике гетинакс и текстолит—слоистые пластики на основе ФФС с бумажным и тканевым наполнителями. Недостатки ФФС—хрупкость, высокая вязкость олигомеров и высокая температура отверждения.
Эпоксидные смолы — продукт поликонденсации многоатомных соединений, включающих эпоксигруппу кольца. Благодаря высокой реакционной способности этих колец отверждение эпоксидных олигомеров можно осуществить с помощью многих соединений и таким образом варьировать температурно-временные режимы обработки и свойства пластмассы. Для холодного отверждения эпоксидных олигомеров применяют алифатические полиамины в количестве 5 … 15% от массы олигомера. Жизнеспособность смеси низкая (1 … З ч), длительность отверждения, наоборот, высокая—24 ч, причем степень полимеризации при этом лишь 60 … 70% и продолжает увеличиваться еще в течение 10 … 30 сут.
Реакция отверждения смол с алифатическими полиаминами экзотермична: в большом объеме может произойти саморазогрев до температуры выше 500 К, что приводит к деструкции полимера и растрескиванию изделия. Поэтому предпочтительнее горячее отверждение, которое осуществляют ароматическими полиаминами (15 … 50% от массы) с нагревом до 370 … 450 К в течение 4 … …16 ч, ангидридом (50..100%, 39…450 К, 12… 24 ч) или синтетическими смолами (25 … 75%, 420 … 480 К, 10 мин … 12 ч). При изготовлении изделий важно избегать как недоотверждения, которое проявляется в повышенных диэлектрических потерях и недостаточной жесткости, так и переотверждения, сопровождающегося потерей эластичности. Достоинства эпоксидов состоят в отсутствии побочных продуктов и очень малой усадке (0,2 … 0,5%) при отверждении, высокой смачивающей способности и адгезии к различным материалам. Механическая прочность, химическая стойкость, совместимость с другими видами смол и олигомеров (ФФС, кремнийорганическими полимерами), большой выбор отвердителей и других добавок—качества, которые делают эти материалы незаменимыми во многих отраслях техники. Если учесть также их высокие диэлектрические и влагозащитные свойства, становится понятным, почему именно эпоксидные смолы стали основным герметизирующим материалом радиокомпонентов и МЭА и связующим главного слоистого пластика РЭА—стеклотекстолита. Немаловажно, что эпоксидные олигомеры могут быть очищены от примесей, а это сводит к минимуму вредное влияние на поверхность полупроводниковых приборов. Наконец, эпоксидные смолы (отвержденные) оптически прозрачны и широко применяются в оптоэлектронных приборах (фотоприемниках, светодиодах, оптопарах).

Свойства эпоксидных смол изменяют в широких пределах, используя различные добавки, которые делятся на следующие группы:

1. пластификаторы—органические соединения — олигомеры, действующие как внутренняя смазка и улучшающие эластичность и предотвращающие кристаллизацию, отделяя цепи полимера друг от друга;
2. наполнители—в небольших количествах вводятся для улучшения прочности и диэлектрических свойств, повышения стабильности размеров, теплостойкости;
3. катализаторы—для ускорения отверждения;
4. пигменты—для окрашивания.
Компаунды могут быть жидкими и порошкообразными, они имеют узкое назначение и поэтому выпускаются многие десятки их типов, которые можно сгруппировать следующим образом: герметики, заливочные, пропиточные, эластичные, тиксотропные.

Недостатки реактопластов: сравнительно высокое значение tg, неприменимость в качестве диэлектриков СВЧ-техники; неполная воспроизводимость технологических свойств олигомеров так как число эпоксигрупп непостоянно, а это сказывается на температуре и длительности отверждения.

СЛОИСТЫЕ ПЛАСТИКИ

Печатные платы (ПП) являются типовыми несущими конструкциями современной РЭА и ЭВА. Печатная плата представляет собой слоистую структуру, в состав которой входит диэлектрическое основание и печатные проводники (медная фольга). Основания ПП изготавливают из слоистых пластиков—композиций, состоящих из волокнистого листового наполнителя — бумаги, ткани, стеклоткани, пропитанных и склеенных между собой различными полимерными связующими. Слоистые пластики отличаются от других материалов тем, что применяемый наполнитель располагается параллельными слоями. Такая структура обеспечивает высокие механические характеристики, а использование полимерных связующих—достаточно высокое удельное электрическое сопротивление, электрическую прочность и малое значение tg6.
Наиболее дешевый материала диэлектрических оснований— гетинакс — обладает высокими диэлектрическими свойствами, находит широкое применение в бытовой радиоаппаратуре. Его недостатком традиционно считается повышенное влагопоглощение (1,5 … 2,5%) через слои бумаги или из открытых их торцевых срезов, а также сквозь полимерное связующее. Выпускается гетинакс на основе ацетилированной бумаги, обладающей повышенной влагостойкостью и способной заменить стеклотекстолиты. Гетинакс для ПП имеет толщину 1 … 3 мм и не расслаивается при нагреве до 533 К (260 °С) в течение 5 … 7 с.
Текстолит обладает более высокой прочностью при сжатии и ударной вязкостью и поэтому используется также в качестве конструкционного материала, и его выпускают не только в виде листов, но и плит толщиной до 50 мм.
Стеклотекстолиты благодаря ценным свойствам наполнителя обладают наиболее высокой механической прочностью, теплостойкостью и минимальным влагопоглощением. Они имеют лучшую стабильность размеров, а электрические свойства остаются высокими и во влажной среде. Вледствие необычной твердости поверхности стеклотекстолиты износоустойчивы.
Выпускается несколько десятков марок стеклотекстолитов, предназначенных для разных целей, в том числе повышенной нагревостойкости, тропикостойкости, гальваностойкости, огнестойкости, с металлической сеткой. Обычные марки фольгированного стеклотекстолита облицованы медной фольгой толщиной 35 … 50 мкм, для полуаддитивной технологии выпускается теплостойкая модификация с фольгой толщиной 5 мкм. Для той же технологии можно применять листовой нефольгированный стеклотекстолит с адгезионным слоем, обладающим неограниченной жизнестойкостью.
Для изготовления ПП по аддитивной технологии требуются диэлектрики с металлическими включениями, образующими центры кристаллизации при химическом меднении. Для этой цели выпускается слоистый пластик—диэлектрик, содержащий мелкодисперсные частицы металлов—Ag или V.

Качество печатных плат характеризуется следующими свойствами:

1. Прочность является одним из основных свойств, поскольку печатные платы выполняют роль не только диэлектрического основания, но и несущей конструкции. Часто требуется вибропрочность, которой, особенно при больших размерах плат, стеклотекстолит не обладает. Следует иметь в виду, что удельная прочность при толщине, большей, чем 1,5 мм, начинает снижаться, так как затрудняется удаление летучих веществ при отверждении и сказывается градиент температуры, который, как и в случае стекла, проявляется в виде микротрещин на поверхности. Это служит еще одним примером размерного эффекта прочности.
2. Нагревостойкость фольгированных слоистых пластиков определяется по отсутствию вздутий, расслаивания и отклеивания фольги, возникающих при пайке. Критерием является время, в секундах, в течение которого разрушения не наблюдаются при нагреве до 533 К (260 °С). Минимальная нагревостойкость — 5 с, у лучших марок—20 с.
3. Стабильность размеров — изменение длины при смене температур в процессе пайки, когда вся плата перегревается примерно до 393 К (120°С); ТКЛР стеклотекстолита при толщине 1,5 мм составляет 8-10-6 К-1, т. е. отличается от ТКЛР меди более чем в 2 раза, поэтому при больших размерах плат возможен обрыв или отслоение фольги. Кроме того, при Т~370 К в эпоксидных смолах наблюдается фазовый переход, выше которого резко возрастает ТКЛР в направлении толщины слоистого пластика, приводящий к обрыву металлизации отверстий. Нестабильность размеров проявляется также в виде неплоскостности — прогиба, коробления, скручивания, которые возникают вследствие механических напряжений.

4. Электрическая прочность стеклотекстолита анизотропна: в продольном направлении она в несколько раз выше, чем в направлении толщины. Причина этому—анизотропия самого материала и наличие микротрещин, уменьшающих эффективную толщину, но не длину и ширину. С увеличением толщины электрическая прочность падает. Так, для плат толщиной 0.5 и 10 мм значение np соответственно 30 и 10 кВ/мм. Наименьшее расстояние между соседними проводниками ПП составляет 0,3 мм, при этом допустимое напряжение—50 В. При большем напряжении это расстояние надо увеличивать, например, напряжение 175 В требуют промежутка 0,8 мм, но предельное напряжение 250 В. Для напряжения 500 В печатный монтаж невозможен.
Недостатки фольгированных стеклотекстолитов являются следствием их неоднородной структуры и особенностей используемых материалов. Это—коробление, нестабильность размеров, растрескивание, отслаивание, воспламеняемость, наволакивание смолы при сверлении отверстий. Кроме того, повышение плотности монтажа, использование групповых методов пайки, тяжелые условия эксплуатации требуют использования связующих, обладающих большей теплостойкостью. Наконец, стеклотекстолит из-за высокого tg6 непригоден для СВЧ-техники.

Печатные платы на термопластах

Применение термопластов для изготовления ПП имеет следующие преимущества:
1. Повышение нагревостойкости до 700 К.
2. Возможность применения в СВЧ-аппаратуре благодаря малым значениям tg6.
3. Упрощение технологии изготовления переходных отверстий, возможность формовки углублений, монтажных фланцев.

Лучшим материалом для этой цели является фторопласт, армированный стеклотканью и фольгированный с двух сторон. Его выпускают в виде листов толщиной 0,5 мм под маркой фторопласт-4Д армированный, фольгированный (ТУ 6-05-164-78). Он нагревостоек до Т=520 К, имеет tg=0,0007 при частоте 1010 Гц и пригоден для СВЧ-техники.

В качестве ПП начинают применять и фольгированную полиимидную пленку, однако преимущества полиимида более полно реализуются, когда он используется в качестве подложек многослойных тонкопленочных коммутационных ПП. Отметим, что и фторопласт, и полиимид примерно в 10 раз дороже стеклотекстолита, их применение должно быть строго обосновано.

10351 всего просмотров, 6 просмотров за сегодня

Биоразлагаемые пластики в индустрии упаковки

| ИНФОРМАЦИЯ ПО ТЕМЕ | 21.11.2008

Термин biodegradable polymer стал неотъемлемой частью «зеленого словаря». Если ранее усилия исследователей были направлены на создание материалов, стойких к воздействию факторов окружающей среды, то сегодня возник новый подход к разработке полимерных материалов. Его цель – получить полимеры, которые сохраняют эксплуатационные характеристики только в течение периода потребления, а затем претерпевают физико-химические и биологические превращения под действием факторов окружающей среды и легко включаются в процессы метаболизма природных биосистем.
Способность полимеров разлагаться и усваиваться микроорганизмами зависит от ряда их структурных характеристик. Наиболее важными являются химическая природа полимера, молекулярная масса, разветвленность макроцепи (наличие и природа боковых групп), надмолекулярная структура.
Природные и синтетические полимеры, содержащие связи, которые легко подвергаются гидролизу, обладают высокой способностью к биодеструкции. Присутствие заместителей в полимерной цепи часто способствует повышению биодеструкции. Последняя зависит также от степени замещения цепи и длины ее участков между функциональными группами, гибкости макромолекул.
Важным фактором, который определяет стойкость полимера к биоразложению, является величина его молекул. В то время как мономеры или олигомеры могут быть поражены микроорганизмами и служат для них источником углерода, полимеры с большой молекулярной массой устойчивы к действию микроорганизмов. Биодеструкцию большинства технических полимеров, как правило, инициируют процессами небиологического характера (термическое и фотоокисление, термолиз, механическая деградация и т. п.).
Упомянутые деградационные процессы приводят к снижению молекулярной массы полимера. При этом возникают низкомолекулярные биоассимилируемые фрагменты, имеющие на концах цепи гидроксильные, карбонильные или карбоксильные группы.
Не менее значимым фактором, оказывающим влияние на биодеградацию, является надмолекулярная структура синтетических полимеров. Компактное расположение структурных фрагментов полукристаллических и кристаллических полимеров ограничивает их набухание в воде и препятствует проникновению ферментов в полимерную матрицу. Это затрудняет воздействие ферментов не только на главную углеродную цепь полимера, но и на биоразрушаемые части цепи. Аморфная часть полимера всегда менее устойчива к биодеструкции, чем кристаллическая.

Известны различные технологические подходы к созданию биоразлагаемых полимеров. Среди них следует выделить следующие направления:
1. селекция специальных штаммов микроорганизмов, способных осуществлять деструкцию полимеров.Данное направление увенчалось успехом только в отношении поливинилового спирта. Японские ученые выделили из почвы бактерии Pseudomonas SP, которые вырабатывают фермент, расщепляющий поливиниловый спирт. После разложения макроцепи ее фрагменты полностью усваиваются бактериями. Бактерии Pseudomonas добавляют к активному илу на водоочистных сооружениях для более полной очистки сточных вод от этого полимера;
2. синтез биоразлагаемых полимеров методами биотехнологии.Получен микробный полиоксибутират, который по своим пластическим свойствам близок к классическим полимерам – полиэтилену и полипропилену. Полиоксибутират и изделия из него легко поддаются разложению под действием микроорганизмов, а также ферментов плазмы животных тканей. Этот полимер применяют не только в качестве упаковочного материала, отходы которого разрушаются естественной почвенной микрофлорой до мономеров, но и используют в хирургии и фармакологии. Английская фирма ICI создала новые полимерные материалы, получаемые с помощью бактерий на натуральных субстратах: сахаре, этаноле, смеси газов (СО2 и Н2). Синтезируемый бактериями полимер – поли-3-гидроксибутират – относится к термопластам и по своим физическим свойствам аналогичен полипропилену. Однако он не устойчив к действию растворителей и имеет низкую теплостойкость. В поли-3-гидроксибутират вводят другой продукт бактериального синтеза –поли-3-гидроксивалериановую кислоту и получают полимерную композицию BiopolTM, которая полностью разрушается микроорганизмами в течение нескольких недель;
3. синтез биоразлагаемых полимерных материалов, имеющих химическую структуру, сходную со структурой природных полимеров.Примером такого синтеза является поддающийся биодеструкции сложный полиэфир алифатического ряда, имеющий химическую структуру, аналогичную структуре полиоксиацетобутирата целлюлозы. Синтетически получены полимеры – аналог лигнина (мето-ксиоксистирол); биодеструктируемый полиамид; разрушающийся микроорганизмами сложный полиэфир, в состав которого входят молочная и фенилмолочная кислоты;
разработка материалов, производимых с использованием возобновляющихся биологических ресурсов.

Создание композиций, содержащих кроме высокомолекулярной основы органические наполнители (крахмал, целлюлозу, амилозу, амилопектин, декстрин и др.), являющиеся питательной средой для микроорганизмов.
Наиболее дешевым методом получения композиций «полимер-наполнитель» является прямое смешивание компонентов. В таком случае наполнитель присутствует в пластике в виде конгломератов размером 10-100 мкм. Величина макрочастиц определяется энергией межфазного взаимодействия и сдвиговым напряжением в процессе экструзии. Полученный из такой смеси материал является частично биоразлагаемым, так как матрица синтетического полимера в лучшем случае распадается на кусочки.
При смешивании наполнителя с синтетическим полимером на микроуровне (размер частиц менее 10 мкм) компоненты смеси образуют взаимопроникающую сетчатую структуру, которая обеспечивает наполненному полимеру эффект дополнительной деструкции. Как известно, наполнитель может скапливаться в менее упорядоченных областях полимера. Кроме того, плотность упаковки макромолекул в граничных слоях системы «полимер-наполнитель» приблизительно вдвое меньше, чем в остальном объеме неупорядоченной фазы полимера. Поэтому при уничтожении наполнителя бактериями облегчается доступ микроорганизмов к менее стойкой по отношению к биодеструкции части полимера. Биоразлагаемые материалы с активным растительным наполнителем впервые появились на упаковочном рынке США, Италии и Германии в 70-80-е гг. ХХ в. Это были композиции крахмала с различными синтетическими полимерами. По сравнению с термопластами на основе пластифицированного крахмала они удачно сочетали технологичность и высокие эксплуатационные характеристики, присущие синтетическому компоненту, со способностью к биодеструкции, обусловленной наличием в их составе природного полимера (крахмала).
Чаще всего крахмалом модифицировали полиэтилен – пластик, наиболее востребованный не только в индустрии упаковки, но имеющий широкий диапазон применения в пищевой и легкой промышленности, медицине, сельском хозяйстве, строительстве и других отраслях. Для получения термопластичных смесей «полимер-крахмал» полисахарид обычно пластифицировали глицерином и водой. Смешивание компонентов осуществлялось в экструдере при температуре 150О С, обеспечивающей хорошую желатинизацию полисахарида и образование двухфазной смеси. Биоразложение композиционного материала, полученного по такой технологии, начиналось с поверхности пленки, обогащенной крахмалом. Для интенсификации биодеструкции в состав композиций вводили фотосенсибилизаторы или самоокисляющиеся добавки, вызывающие деструкцию полимерной цепи с образованием участков, достаточно малых для того, чтобы быть усвоенными микроорганизмами.
Среди коммерческих продуктов, изготовленных на основе композиций «полиэтилен-крахмал» следует назвать разработанный фирмой Archer Daniels Midland (США) концентрат Ро1усleanТМ для производства биоразлагаемых пленок. Кроме крахмала (40%) в его состав входит окисляющая добавка, действующая как катализатор биодеструкции крахмала не только на свету, но и в темноте. Деструкция крахмала облегчает доступ микроорганизмов и кислорода к поверхности полимера, т. е. наблюдается синергический эффект.
Фирма St Sawrence Starch (США) предлагает концентрат Ecostarplus ™, разработанный совместно со швейцарской фирмой Roxxo Group. Он содержит самоокислитель и фотодеградант (органометаллические соли), который синергически взаимодействует с биоразрушающим компонентом – крахмалом. Материал используется в качестве добавки при изготовлении мешков под компост.
Крахмал плохо совместим с неполярным полиэтиленом, поэтому современные исследования по улучшению сродства природного и синтетического полимеров проводятся в двух направлениях:

1. получение смесей крахмала с сополимерами этилена или другими, более полярными полимерами;
2. модифицирование крахмалов с целью повышения их совместимости с полиэтиленом.

Наиболее часто в смесях с крахмалом используют сополимеры этилена с винилацетатом (СЭВА) или продукты омыления ацетатных групп в таких сополимерах. Изучены также композиции крахмала с сополимером этилена и пропилена – полистиролом.
Экструзией получены смеси крахмалов восковой или нативной кукурузы, а также высокоамилозного крахмала марки Hylon  с сополимером этилена и винилового спирта (ЭВС, 56% звеньев СН2СН (ОН)). Хорошо формуются композиции крахмала с сополимером этилена, пропилена и малеинового ангидрида, а также с сополимером полистирола и малеинового ангидрида. Они обладают удовлетворительными механическими характеристиками и способны к биоразложению под действием спор грибков Penicillium funiculogum, причем биодеградация облегчается с повышением содержания крахмала. При малом содержании крахмала его гранулы остаются капсулированными в синтетическом полимере и поэтому труднодоступными для микроорганизмов.
В отношении улучшения сродства с неполярными полимерами типа полиэтилена и полипропилена перспективными являются эфиры крахмала и высших жирных кислот. Причем эфирные группы с длинными алкильными радикалами не только увеличивают совместимость крахмала с неполярным синтетическим компонентом, но и действуют как внутренние пластификаторы. Однако скорость биодеградации таких композитов по сравнению со смесями «полиэтилен-немодифицированный крахмал» меньше.
Из смеси полиэтилена высокого давления и крахмала, модифицированного введением в его молекулы холестериновых остатков, получены раздувные пленки. По сравнению с материалами из нативного крахмала пленки более однородны и характеризуются большей прочностью. Их биодеградация в компосте проходит быстрее, чем пленок из смеси «полиэтилен-немодифицированный крахмал», очевидно, за счет разрыхления структуры крахмала крупными холестериновыми фрагментами.
Получение и исследование свойств систем на основе химически модифицированного крахмала пока еще имеет значительно меньшее значение, чем систем на основе смеси нативного крахмала с другими полимерами.
Наиболее известным и крупнотоннажно выпускаемым синтетическим продуктом, содержащим в качестве активного биоразлагаемого наполнителя крахмал, является материал Mater-BiТМ (марки AT 05H, AF 05H, A 105H, АВ 05Н, АВ 06Н, AF 10H). Его промышленное производство осуществляет фирма Novamont S.p.A (Италия). Композит получают на основе смеси крахмала с поликапролактоном или ЭВС. Он высоко экономичен, подвергается вторичной переработке. Стоимость – 60 тыс. ит. лир за 1 кг. Разлагается в почве как в аэробных, так и в анаэробных условиях без выделения вредных продуктов и твердых остатков за 60 суток. В аэробных условиях при биодеградации под влиянием микроорганизмов соотношение крахмала к поликапролактону сохраняется постоянным (54:46); в анаэробных условиях биодеградация идет преимущественно за счет крахмала. Данный материал способен также разлагаться в воде и компосте. В водной среде  пластификатор быстро вымывается. Основные способы переработки (в зависимости от марки) – экструзия (в т. ч. с последующим раздуванием заготовки), термоформование, литье под давлением, штамповка. Ассортимент выпускаемых изделий: пакеты; упаковка для медикаментов; стаканчики; пробки; крышки; флаконы для парфюмерно-косметических товаров, порошкообразных веществ, смазок и др.; пленочные материалы с высокой кислородонепроницаемостью (марка AF 10H).
Таким образом, способность полимерных материалов к биодеструкции обусловлена главным образом их химическим составом, структурой и свойствами макромолекул. Вместе с тем на устойчивость полимеров упаковочного назначения к биологическому разложению большое влияние оказывают некоторые макроструктурные характеристики (величина пористости, равномерность распределения добавок в полимерной массе, особенности обработки поверхности изделий и т. п.), а также технологические параметры изготовления материала и его переработки в упаковку.
Наиболее доступны и находят все большее практическое применение в индустрии упаковки материалы на основе крахмала или его смесей с синтетическими полимерами, свойства которых, в том числе и способность к биоразложению, зависят от совместимости компонентов и структуры получаемых систем. Однако термодинамика и энергетика взаимодействия компонентов в смесях крахмала с синтетическими полимерами и структура таких систем мало изучены.

Цель новейших разработок в области создания биоразлагаемых пластмасс упаковочного назначения состоит в том, чтобы установить общие закономерности в подборе компонентов и технологических параметров при изготовлении материалов, сочетающих высокий уровень эксплуатационных характеристик (прочность, низкую газопроницаемость, экологическую безопасность, хорошую формуемость и др.) со способностью к биоразложению, и научиться регулировать процессы их деструкции для обеспечения быстрой и безопасной деградации упаковки по окончании срока ее службы.В заключение следует отметить, что интенсификация исследований в области создания biodegradable polymer важна не только для дальнейшего успешного развития рынка биоразлагаемой полимерной упаковки. Это одно из перспективных направлений решения глобальной экологической проблемы, связанной с загрязнением окружающей среды отходами полимерных материалов.

Практически любая упаковка, выполнившая свои функции для производителя и потребителя, оказывается на свалке, и далее мы можем абстрактно описывать любую упаковку как отходы. Проблема упаковки в качестве отходов стоит очень остро вследствие огромного количества ежедневно выбрасываемых упаковок.

Отходы — это материалы и предметы, от которых избавляется их владелец по собственному желанию или по требованию закона, что делает необходимым организацию их сбора, сортировки, очистки, транспортировки и обработки, складирование и дальнейшую переработку или какое-либо другое использование, а также ликвидацию. Отходы подразделяются на несколько видов:
* бытовые отходы — мусор, скапливающийся в квартирах, домах, крупных магазинах, предприятиях бытового обслуживания и т.д.
* промышленные отходы — отходы, скапливающиеся на промышленных предприятиях.
К настоящему моменту в крупном городе на одного человека в год в среднем приходится 250-300 кг твердых бытовых отходов (ТБО), а ежегодный прирост составляет около 5 %, что приводит к быстрому росту мусорных свалок как разрешенных (зарегистрированных), так и «диких» (незарегистрированных).
Свалки приводят к значительному ухудшению окружающей среды: загрязнению воздуха, почвы и грунтовых вод метаном, диоксидом серы, растворителями, 2,3,7,8-тетрахлордибензо-1,4-диоксаном (диоксин), инсектицидами, тяжелыми металлами в виде их солей и другими вредными веществами. Свалки являются причиной просадки грунта, непродуктивного использования земельных участков вместо полезного отведения их под садово-парковые посадки, жилищное строительство или общественно-значимых сооружения и т.д.
Свалки способствуют возникновению эпидемиологической опасности, связанной с появлением грызунов и переносу ими различных заболеваний. По мере увеличения свалки наступают и постепенно занимают «зеленые» зоны и пригородные места отдыха. Это, в свою очередь, требует увеличения затрат на транспортировку отходов и способствует дальнейшему загрязнению территорий выхлопными газами транспортных средств. Проблема охраны окружающей среды от изношенной и использованной упаковки может быть решена двумя путями — уничтожением и утилизацией; последняя подразумевает ее трансформацию в полезный продукт. Основными способами уничтожения ТБО, включающих изношенную упаковку, являются захоронение и сжигание.
Захоронение ТБО связано с отведением под мусорные свалки значительных земельных участков и отторжением их от полезного использования. В РФ примерно 90 % ТБО вывозится на свалки, занимающие более 20 тыс. га. Каждая такая свалка «съедает» от 6 до 50 га земельных угодий. Кроме того, на свалки вывозится ценнейшее вторичное сырье (макулатура, пластмассы, стекло, металлы и др.), которое может и должно вовлекаться в полезные производственные циклы.
Сжиганию можно подвергать как твердые, так и жидкие отходы. Этот метод не является рациональным и экономичным, так как при сжигании выделяются ядовитые продукты окисления. При сжигании отходов имеет место быстрый износ установок (мусоросжигательных печей), выделение вредных продуктов сжигания в атмосферу и повторное ее загрязнение, попадание токсичных солей тяжелых металлов в почву и водную среду, а значит и в организм человека. Установки для сжигания мусора, как правило, представляют собой сложные и дорогостоящие сооружения, так как они должны быть оснащены эффективными фильтрами и газоуловителями.
Указанные причины не позволяют широко использовать данный метод для уничтожения ТБО, хотя в некоторых случаях, например, при невозможности разделения отходов он может оказаться единственным способом уничтожения. Форсированным способом уничтожения полимерных отходов из использованных упаковок может явиться их радиационная обработка. Необходимый результат при этом можно получить, используя гамма-излучение, нейтроны и бета-частицы, энергия которых в значительной степени превышает энергию химических связей макромолекул. При радиодеструкции полимеров образуются низкомолекулярные и олигомерные свободные радикалы, которые легко взаимодействуют с кислородом воздуха, инициируя цепные реакции фото- и термоокислительной деструкции, приводящие к разрушению полимеров.
В результате воздействия на полимерную основу упаковки различных факторов природного и техногенного характеров макромолекула распадается на более низкомолекулярные продукты, такие, как спирты, эфиры, кислоты и карбонильные соединения, которые затем естественным образом вовлекаются в природные и биологические циклы круговорота веществ, как правило, не нанося вреда окружающей среде.

Отходы потребления и промышленные отходы, пригодные к дальнейшей переработке, называют вторичным полимерным сырьем (ВПС), к которому относятся необработанные изделия из полимерных и других материалов, а также смесевых композиций (композиционных материалов), утративших свои потребительские свойства в результате физического или морального износа и предназначенные для переработки и использования в народном хозяйстве.
При утилизации вторичного полимерного сырья с целью создания малоотходных технологий и снижения нагрузки на окружающую среду особую роль в организации сбора ВПС и его сортировки играет экологическая маркировка. Европейский союз предпринимает значительные усилия по введению унифицированной экомаркировки. Решение о ее присвоении принимается компетентными органами стран-членов ЕС на конкурсной основе. Наносимая на упаковку экологическая маркировка подразделяется на три основные группы:
Знаки, обозначающие степень экологического благополучия товара или его упаковки. К ним относятся, например, голубой ангел ()Право на его использование осуществляется на конкурсной основе и путем продажи, что составляет финансовую основу DSD.
Основой единой экомаркировки в соответствии с требованиями ЕС является знак, который может быть выполнен в двух цветах (зеленом и голубом), а также черным по белому или белым цветом на черном фоне.
К этой группе можно отнести знаки, обозначающие изделия, поддающиеся повторному использованию или полученные в результате вторичной переработки. Существует большое разнообразие таких знаков, но наиболее распространенными являются знаки, представляющие замкнутый цикл, обозначающие систему «создание — применение — утилизация» с указанием материала, из которого произведено данное изделие.
Наиболее узнаваемым и распространенным из этой серии знаков представляется знак «Зеленая точка» в рамках «Дуальной системы» Германии (DSD).
В соответствии с требованиями Директивы ЕС всякая упаковка должна маркироваться следующими знаками: повторное или многоразовое использование При необходимости для идентификации материала упаковки и облегчения сортировки на нее наносятся цифровые или буквенные обозначения, расположенные чаще всего в центре знака ( а иногда — ниже), позволяющая установить тип материала.
Упаковочные материалы обозначаются следующими цифрами:
пластмассы — от 1 до 19;
бумага и картон — от 20 до 39;
металлы от 40 до 49;
древесина — от 50 до 59;
текстиль — от 60 до 69;
стекло — от 70 до 79.
В свою очередь, для пластмасс установлены следующие цифровые обозначения:
1 — ПЭТ,
2 — ПЭНД,
3 — ПВХ,
4 — ПЭВД,
5 — ПП,
6 — ПС,
7 — другие полимеры.

Знаки, призывающие к сбережению окружающей среды.

Знаки этой группы чаще всего встречаются на упаковке потребительских товаров. Их смысл сводится к призыву не сорить, поддерживать чистоту и сдавать использованные изделия на вторичную переработку, опуская их в соответствующие мусорные сборники.
Знаки, предупреждающие об опасности изделия или предмета для окружающей среды. К ним относятся: специальные знаки для обозначения веществ, представляющих опасность для морской фауны и флоры, при их перевозке водными путями;
В последние годы, как в странах СНГ, так и за рубежом возрос интерес к биоразлагаемым полимерным материалам и упаковкам из них, которые легко разрушаются при воздействии различных микроорганизмов. Важно отметить, что при биодеградации таких полимеров не образуются вещества, токсичные для человека и животных или опасные для окружающей среды. Создание материалов, которые часто называют материалами с регулируемым сроком службы, предполагает введение в них специальных добавок, ускоряющих распад макромолекулы полимера.
Для этих целей используют различные полисахариды (крахмал, альгинаты, пектины и др.), содержание которых может достигать 60 %. Наиболее дешевым и экономически целесообразным в настоящее время является использование растительного крахмала в силу его дешевизны, распространенности и отработанных методик производства с учетом сырья, характерного для Центрально-азиатского региона. Для производства крахмала используют картофель, кукурузу, горох, а также рис, пшеницу и некоторые другие растения. По внешнему виду крахмал представляет собой порошок белого или желтоватого цвета.
Макромолекула крахмала представляет собой сложное вещество и состоит из двух полисахаридов, различных по структуре и свойствам — амилозы (20-30%) и амилопектина (70-80% от массы крахмала). Оба полисахарида построены из одинаковых глюкозных остатков, но амилоза имеет линейное строение, а амилопектин — разветвленное.

Разработана серия биоразлагаемых материалов различного состава и назначения с применением крахмала и других добавок. Установлено, что молекула полисахарида крахмала совмещается с макромолекулами синтетических полимеров. Недостатком таких крахмалсодержащих продуктов является их повышенная способность к впитыванию влаги, в результате чего они могут оказаться непригодными для упаковки продуктов с повышенной влажностью, а также для изготовления сельскохозяйственных пленок.
При изготовлении биоразлагаемых полимерных материалов учитывают, что процесс деструкции (разрушения) базового искусственного полимера практически не ускоряется. Для интенсификации этого процесса в состав полимерной матрицы вводят добавки, ускоряющие ее распад под действием УФ-облучения. К таким добавкам относятся сополимеры на основе этилена и моносахарида углерода, винилкетоны и другие материалы (Ecoplast, Ecolyte — Канада, Bioplast, Ecostar — Великобритания, Novon и Tone — США, Biocell — Франция и др.)
В состав нового бноразлагаемого материала Mater-Bi (Италия) входит в качестве базового полимера полиамид-6(6,6) и различные добавки природного происхождения (от 60 до 90 %), а также синтетические нетоксичные полимеры с низкой молекулярной массой (допущенные для непосредственного контакта с пищевыми продуктами). Такие полимеры обладают хорошей гидрофильностью и достаточно высокой скоростью разложения под влиянием природных биологических факторов. Упаковки из этого материала, вывезенные на свалки, полностью разлагаются практически без остатка, не нанося ущерба окружающей среде.
Важной разновидностью биодеградируемых упаковочных материалов являются композиции полностью природного происхождения. Одним из таких биодеградируемых полимеров является Biopol (фирма ICI, Великобритания). Он представляет собой биосинтетический сополимер — полигидроксибутират или полигидроксивалерат. Сополимер получают из биомассы бактерий определенного штамма, который культивируют на углеводных питательных средах. Варьируя соотношение мономерных звеньев, можно получать полиэфирные материалы с различными свойствами. Biopol полностью отвечает требованиям, предъявляемым к упаковкам одно- или двухразового применения; легко разлагается под воздействием биологических факторов в анаэробных условиях (например, внутри компоста или под землей), а также в анаэробной среде — на полях орошения или в воде. Время разложения составляет от 6 до 36 недель.
Другим примером биоразлагаемого полимера на основе гидроксикарбоновой кислоты (или ее лактида) может служить Novon фирмы Wamer-Lambert & Со (США). Этот материал в присутствии влаги способен разлагаться как на воздухе, так и в анаэробных условиях. Поскольку Novon построен из остатков молочной кислоты, его метаболизируют не только микроорганизмы, но и многие членистоногие. Это приобретает большое значение, если начальная удельная поверхность деградируемой упаковки мала, и, как следствие, мала площадь атаки со стороны деградирующих факторов.
Материал Biocell (Франция) создан на основе ацетата целлюлозы, в которую вводятся различные добавки и пластификаторы, способствующие разложению материала под влиянием факторов окружающей среды, в том числе солнечной радиации. По своим физико-механическим свойствам он напоминает ПЭНП, но обладает более высокими прочностными характеристиками и прозрачностью. После погружения в воду упаковка из такого материала набухает, и уже через б месяцев до 40 % материала разлагается, превращаясь в углекислый газ и воду. Полное разложение Материала осуществляется в течение 18 месяцев за счет почвенной микрофлоры.
В США широкое распространение получили биоразлагаемые на открытом воздухе упаковки под общим названием TONE. Основой для их производства служит поликапролактам, который хорошо совмещается механическим способом со многими широко производимыми пластиками (ПЭ, ПП, ПВХ, ПС, ПК, ПЭТФ). Существенным достоинством этой группы материалов является их принадлежность к термопластам, достаточная доступность и низкая стоимость, легкость переработки различными методами, высокий уровень свойств и скорость разложения на открытом воздухе.
Основой таких сравнительно новых материалов, как Ecostar, Polyclean и Ampaset, является ПЭВД и крахмалы злаковых растений в качестве биоразлагаемой добавки. В крахмалосодержащую композицию вводят также антиоксиданты для уменьшения деструкции в процессе переработки композиции в изделия. При переработке композиции в упаковку может происходить карамелизация (самовозгорание) материала, поэтому используемый крахмал во избежание этого необходимо сушить до содержания остаточной влаги, равной 1 %, а также тщательно контролировать температуру расплава в цилиндре экструдера, которая не должна превышать 193-203°С, шнека и стенок цилиндра. Для сокращения времени пребывания перерабатываемой композиции в экструдере до минимума необходимо использовать экструзионное оборудование с отношением L/D не более 20.

Во избежание образования различных посторонних включений («геликов») в готовой упаковке необходимо, чтобы скорость вращения шнека была оптимальной. При изготовлении биоразлагаемых упаковок из крахмалосодержащих полимерных материалов в процессе последующей герметизации сваркой необходимо тщательно следить за температурой сварки при получении прочного сварного шва. Повышение температуры приводит к деструкции крахмальной добавки, что легко обнаруживается по появлению запаха свежевыпеченного хлеба. Стоимость всех разлагаемых полимерных материалов и упаковок на них определяется стоимостью исходного базового полимера, другою сырья, добавок и способов получения. В настоящее время потребность в разлагаемых упаковках достаточно велика. В развитых странах мира большая часть упаковки одноразового использования производится из биоразлагаемых материалов.
Однако следует отметить, что пока еще производство и потребление биоразлагаемых упаковочных материалов и упаковок не решает полностью проблемы охраны среды обитания от использованной и изношенной полимерной упаковки и тары. Причин здесь несколько: — трудность регулирования скорости распада на свалках под воздействием факторов окружающей среды; — довольно высокая стоимость вводимых добавок; — технологические трудности производства; — экологические трудности, которые связаны с тем, что, но данным некоторых исследований, не снижается опасность отрицательного воздействия материалов и продуктов их распада на природу и животных; — безвозвратная потеря ценных сырьевых и топливно-энергетических ресурсов, которые при правильном и грамотном решении могли бы приносить достаточно высокую прибыль народному хозяйству.
По этим причинам уничтожение отходов путем создания и применения быстроразлагаемых упаковок пока что должно иметь ограниченное и контролируемое применение. Очень многое будет в дальнейшем зависеть от успехов химической технологии, которые позволят преодолеть большинство перечисленных проблем. Сейчас же, в условиях нашей республики, наиболее рациональным способом устранения отходов в виде изношенной и/или использованной упаковки представляется организация их утилизации.

4754 всего просмотров, 2 просмотров за сегодня

Адсорбция полимеров

| ИНФОРМАЦИЯ ПО ТЕМЕ | 21.11.2008

ВЛИЯНИЕ ТВЕРДОЙ ПОВ